• bzoj4373 算术天才⑨与等差数列


    bzoj4373 算术天才⑨与等差数列

    给定一个长为 (n) 的序列 (a_i) ,有 (m) 次操作:

    • 单点修改
    • 询问将区间中的数升序排序后是否是一个公差为 (k) 的等差数列

    强制在线

    (n, mleq3 imes10^5, 0leq a_i, kleq10^9)

    线段树,hash


    区间 ([l, r]) 所组成的等差数列首项为 (min{a_{lcdots r}}) ,末项为 (max{a_{lcdots r}}) ,公差为 (k)

    可以考虑求出 ([l, r]) 和这个等差数列的hash值,接着对比即可

    如果将区间和作为hash值,冲突率很高,可以考虑用每个数的平方作为hash值

    设该等差数列首项为 (l) ,公差为 (k) ,项数为 (t)

    则它的hash值为 $$displaystylesum_{a=0}t{(l+ak)2}$$

    接着大力化式子

    [egin{aligned}hash&=displaystylesum_{a=0}^t{l^2+2lak+a^2k^2}\&=(t+1)l^2+kdisplaystylesum_{a=0}^t{a^2k+2la}\&=(t+1)l^2+k(displaystylesum_{a=0}^t{a^2}+2lsum_{a=0}^ta)\&=(t+1)l^2+k(frac{t(t+1)(2t+1)}{6}+lt(t+1))end{aligned} ]

    故可 (O(1)) 求出

    此题还需要特判 (l=r)(k=0) 的情况

    由于我担心被卡,用了双模数,常数稍大 qaq

    然而维护平方可以卡掉T_T,貌似维护三次方就吼辣?但式子化起来太麻烦了qaq

    upd: 维护任意次方都会被卡,但是比如说维护二十几次方就没人会卡你,但化式子太麻烦了

    时间复杂度 (O(nlog n))

    #include <bits/stdc++.h>
    using namespace std;
    
    #define mid ((l + r) >> 1)
    #define lson k << 1, l, mid
    #define rson k << 1 | 1, mid + 1, r
    const int maxn = 3e5 + 10, P1 = 1e9 + 7, P2 = 1e9 + 9, inv1 = 166666668, inv2 = 833333341;
    int n, m, lastans;
    
    struct node {
      int mn, mx, v1, v2;
      node(int x = INT_MAX, int y = 0, int _v1 = 0, int _v2 = 0) :
        mn(x), mx(y), v1(_v1), v2(_v2) {}
    } tree[maxn << 2];
    
    inline node operator + (node a, node b) {
      return node(min(a.mn, b.mn), max(a.mx, b.mx), (a.v1 + b.v1) % P1, (a.v2 + b.v2) % P2);
    }
    
    void build(int k, int l, int r) {
      if (l == r) {
        int x;
        scanf("%d", &x);
        tree[k] = node(x, x, 1ll * x * x % P1, 1ll * x * x % P2);
        return;
      }
      build(lson), build(rson);
      tree[k] = tree[k << 1] + tree[k << 1 | 1];
    }
    
    void upd(int k, int l, int r, int x, int v) {
      if (l == r) {
        tree[k] = node(v, v, 1ll * v * v % P1, 1ll * v * v % P2);
        return;
      }
      if (x <= mid) {
        upd(lson, x, v);
      } else {
        upd(rson, x, v);
      }
      tree[k] = tree[k << 1] + tree[k << 1 | 1];
    }
    
    node query(int k, int l, int r, int ql, int qr) {
      if (ql <= l && r <= qr) {
        return tree[k];
      }
      node res;
      if (ql <= mid) res = query(lson, ql, qr);
      if (qr > mid) res = res + query(rson, ql, qr);
      return res;
    }
    
    inline int getsum(int l, int k, int t, int P, int inv) {
      return (1ll * l * l % P * (t + 1) % P + k * (1ll * l * t % P * (t + 1) % P + k * (1ll * t * (t + 1) % P * (2 * t + 1) % P * inv % P))) % P;
    }
    
    inline int getsum1(int l, int r, int k) {
      return getsum(l, k, (r - l) / k, P1, inv1);
    }
    
    inline int getsum2(int l, int r, int k) {
      return getsum(l, k, (r - l) / k, P2, inv2);
    }
    
    inline int reget(int x) {
      if (x < 1) x = 1;
      if (x > n) x = n;
      return x;
    }
    
    int main() {
      scanf("%d %d", &n, &m);
      build(1, 1, n);
      int op, x, y, k; node tmp;
      while (m--) {
        scanf("%d %d %d", &op, &x, &y);
        x ^= lastans, y ^= lastans, x = reget(x);
        if (op == 1) {
          upd(1, 1, n, x, y);
          continue;
        }
        y = reget(y);
        if (x > y) swap(x, y);
        bool ans;
        scanf("%d", &k);
        k ^= lastans;
        if (x == y) {
          ans = 1;
        } else {
          tmp = query(1, 1, n, x, y);
          ans = k ? tmp.mx - tmp.mn == 1ll * k * (y - x) && getsum1(tmp.mn, tmp.mx, k) == tmp.v1 && getsum2(tmp.mn, tmp.mx, k) == tmp.v2 : tmp.mn == tmp.mx;
        }
        ans ? lastans++, puts("Yes") : puts("No");
      }
      return 0;
    }
    
  • 相关阅读:
    H01-Linux系统中搭建Hadoop和Spark集群
    L07-Linux配置ssh免密远程登录
    L06-Ubuntu系统中部署Vagrant和VirtualBox
    P03-Python装饰器
    L05-Linux部署msmtp+mutt发送邮件
    O01-Linux CentOS7中利用RDO部署OpenStack
    L03-Linux RHEL6.5系统中配置本地yum源
    LoggerFactory.getLogger用法
    maven配置本地和远程仓库
    Jmeter下载安装配置及使用(windows)
  • 原文地址:https://www.cnblogs.com/Juanzhang/p/10659228.html
Copyright © 2020-2023  润新知