• Linear Regression


    Linear Regression

    公式推导

    线性函数

    [y = omega_1x_1+omega_2x_2 + cdots+omega_ix_i+b ]

    可以用下面的方式利用矩阵在表示:

    [y=left[ matrix{ omega_1 && omega_2 && cdots && omega_i && b } ight]left[ matrix{ x_1 \ x_2 \ cdots \ x_i \ 1 } ight]=omega^TX+b ]

    对于提供的m组数据,每个数据有(x_i)(y_i)两个参数,分别表示输入和输出数据。所以上述的公式中的y应是预测值,表示为:

    [hat{y}=h(X_i)=omega^TX_i+b ]

    下面引入损失函数的概念

    [egin{align} J( heta)=frac{1}{2m}sum_{i=0}^{m}(h_ heta(X_i)-y_i) \ J( heta)=frac{1}{2m}sum_{i=0}^{m}(omega^TX_i+b-y_i) end{align} ]

    针对m组数据,计算每组数据的预测值和真实值的差的平方和,再除以2m,即为损失函数。

    通过python代码,将(y= heta x)​​的参数在0~2之间的变化的图像画出:

    import matplotlib.pyplot as plt
    import numpy as np
    
    x = np.arange(0, 10, 0.01)
    y = x
    
    # 损失函数
    def calCost(theta):
        h = [i * theta for i in x]
        cost = 0
        for i in range(len(h)):
            cost += (y[i]-h[i])*(y[i]-h[i])
        return cost
    
    thetas = np.arange(0, 2, 0.001)
    costs = list(map(calCost, thetas))
    plt.plot(thetas, costs)
    plt.show()
    

    image-20210723091907503

    为了让我们计算出的参数是的线性函数与数据集相拟合,我们可以得出当:

    [egin{align} frac{partial J( heta)}{partial omega^T}=0 \ frac{partial J( heta)}{partial b}=0 end{align} ]

    当偏导数为0时,即此时的损失函数计算获得最小值,误差最小,w和b得到最优解,下面是上述方程的展开式:

    [egin{align} frac{partial J(omega,b)}{partialomega} & = frac{1}{2m}sum_{i=1}^{m}2(omega^TX_i+b-y_i)X_i \ & = frac{1}{m}sum_{i=1}^m(omega^TX_i^2+bX_i-X_iy_i)\ & = frac{omega^T}{m}sum_{i=1}^{m}X_i^2-frac{1}{m}sum_{i=1}^{m}(y_i-b)X_i=0 \ frac{partial J(omega,b)}{partial b} & = frac{1}{2m}sum_{i=1}^{m}2(omega^TX_i+b-y_i) \ & = frac{1}{m}sum_{i=1}^m(omega^TX_i+b-y_i)\ & = b=frac{1}{m}sum_{i=1}^{m}(y_i-omega X_i) = 0 end{align} ]

    解得$$和b等于:

    [egin{align} omega=frac{sum_{i=1}^{m}y_i(X_i-ar{x})}{sum_{i=1}^{m}X_i^2-frac{1}{m}(sum_{i=1}^{m})^2} \ end{align} ]

    [b=frac{1}{m}sum_{i=1}^{m}(y_i-omega^TX_i) ]

    如果使用梯度下降法

    那么每次更新的公式是:

    [left[ matrix{ omega \ b } ight]_{new}=left[ matrix{ omega \ b } ight]_{old}-alphaleft[ matrix{ frac{partial J(omega,b)}{partialomega} \ frac{partial J(omega,b)}{partial b} } ight] ]

    新参数根据原参数减去学习率乘上原参数对各项求偏导的值,进行更新。

    Pytorch从0开始实现

    生成随机数据

    import torch
    import numpy as np
    import random
    
    num_inputs = 1 #  参数个数
    num_examples = 1000 # 生成数据个数
    true_w = [2] # w
    true_b = 6.7 # b
    # 输入,1000行1列
    features = torch.randn(num_examples, num_inputs, dtype=torch.float32)
    # 输出:w1x1+w2x2+b+随机数(噪声)
    labels = true_w[0] * features[:, 0] + true_b
    labels += torch.tensor(np.random.normal(0, 0.01, size=labels.size()), dtype=torch.float32)
    
    # 显示数据
    from d2l import *
    set_figsize()
    plt.scatter(features[:, 0].numpy(), labels.numpy(), 1)
    plt.show()
    

    image-20210723100426979

    # 小批量数据生成
    def data_iter(batch_size, features, labels):
        num_examples = len(features) # 数据的总大小
        # 生成下标列表
        indices = list(range(num_examples))
        # 打乱下标列表
        random.shuffle(indices)
        # 从0到数据总大小,每次增加batch_size个
        for i in range(0, num_examples, batch_size):
            # 取出数据的第i个到第i+batch_size个
            # 最后一次可能不足一个batch,所以要取min
            j = torch.LongTensor(indices[i: min(i + batch_size, num_examples)])
            # 把下标从0到j-1的数据返回
            yield  features.index_select(0, j), labels.index_select(0, j)
    
    
    # 生成w是均值为0,标准差为0.01的正态随机数
    w = torch.tensor(np.random.normal(0, 0.01, (num_inputs, 1)), dtype=torch.float32)
    # b初始化为0
    b = torch.zeros(1, dtype=torch.float32)
    
    # 允许求梯度
    w.requires_grad_(requires_grad=True)
    b.requires_grad_(requires_grad=True)
    
    # y=wx+b
    def linreg(X, w, b):
        return torch.mm(X, w) + b
    
    # 损失函数
    def squared_loss(y_hat, y):
        return (y_hat - y.view(y_hat.size())) ** 2 / 2
    
    # SGD
    def sgd(params, lr, batch_size):
        for param in params:
            param.data -= lr * param.grad / batch_size
    
    
    lr = 0.03  # 学习率
    num_epochs = 5  # 学习次数
    net = linreg  # 网络模型
    loss = squared_loss  # 损失函数
    batch_size = 10 # 批量大小
    
    # 训练模型一共需要num_epochs个迭代周期
    for epoch in range(num_epochs):
        # 在每一个迭代周期中,会使用训练数据集中所有样本一次(假设样本数能够被批量大小整除)
        # X和y分别是小批量样本的特征和标签
        for X, y in data_iter(batch_size, features, labels):
            # l是有关小批量X和y的损失
            l = loss(net(X, w, b), y).sum()
            # 反向传播小批量的损失对模型参数计算梯度
            l.backward()
            # 使用小批量随机梯度下降迭代模型参数
            sgd([w, b], lr, batch_size)
    
            # 梯度清零,很重要
            w.grad.data.zero_()
            b.grad.data.zero_()
    
        # 计算目前的w和b和正确的w和b的差值
        train_l = loss(net(features, w, b), labels)
        # 打印差值和
        print('epoch %d, loss %f' % (epoch + 1, train_l.mean().item()))
    
    print(true_w, '
    ', w)
    print(true_b, '
    ', b)
    

    打印结果

    epoch 1, loss 0.048183
    epoch 2, loss 0.000156
    epoch 3, loss 0.000053
    epoch 4, loss 0.000053
    epoch 5, loss 0.000053
    [2] 
     tensor([[2.0003]], requires_grad=True)
    6.7 
     tensor([6.6993], requires_grad=True)
    

    Pytorch 简洁实现

    import torch
    import numpy as np
    from torch import nn
    from torch.nn import init
    import torch.optim as optim
    
    # 生成数据
    num_inputs = 1
    num_examples = 1000
    true_w = [2]
    true_b = 4.2
    features = torch.tensor(np.random.normal(0, 1, (num_examples, num_inputs)), dtype=torch.float)
    labels = true_w[0] * features[:, 0] + true_b
    labels += torch.tensor(np.random.normal(0, 0.01, size=labels.size()), dtype=torch.float)
    
    
    import torch.utils.data as Data
    
    # 批量大小
    batch_size = 10
    # 将训练数据的特征和标签组合
    dataset = Data.TensorDataset(features, labels)
    # 随机读取小批量
    data_iter = Data.DataLoader(dataset, batch_size, shuffle=True)
    
    net = nn.Sequential(
        nn.Linear(num_inputs, 1)
    )
    
    # 初始化模型参数
    # 修改w,正态分布,均值为0,标准差为1
    init.normal_(net[0].weight, mean=0, std=0.01)
    # 修改b
    init.constant_(net[0].bias, val=0)
    
    
    # 损失函数
    loss = nn.MSELoss()
    
    
    # SGD
    optimizer = optim.SGD(net.parameters(), lr=0.03)
    
    
    # 训练
    num_epochs = 5
    for epoch in range(1, num_epochs + 1):
        for X, y in data_iter:
            output = net(X)
            l = loss(output, y.view(-1, 1))
            optimizer.zero_grad() # 梯度清零,等价于net.zero_grad()
            l.backward()
            optimizer.step()
        print('epoch %d, loss: %f' % (epoch, l.item()))
    
    
    # 查看结果
    dense = net[0]
    print(true_w)
    print(dense.weight)
    print(true_b)
    print(dense.bias)
    

    输出值

    epoch 1, loss: 0.000351
    epoch 2, loss: 0.000137
    epoch 3, loss: 0.000202
    epoch 4, loss: 0.000056
    epoch 5, loss: 0.000073
    [2]
    Parameter containing:
    tensor([[2.0008]], requires_grad=True)
    4.2
    Parameter containing:
    tensor([4.1992], requires_grad=True)
    
  • 相关阅读:
    杭电2095--find your present (2) (异或)
    南阳168--房间安排(区间覆盖)
    南阳954--N!(数学)
    南阳--69(数的长度)
    杭电--N!(大数)
    杭电1005--Number Sequence
    杭电1108--最小公倍数
    动态规划:最长上升子序列(二分算法 nlogn)
    动态规划:最长上升子序列之基础(经典算法 n^2)
    vector函数用法
  • 原文地址:https://www.cnblogs.com/JoshuaYu/p/15048316.html
Copyright © 2020-2023  润新知