• DSO windowed optimization 代码 (3)


    4 Schur Complement 部分信息计算

    参考《DSO windowed optimization 公式》,Schur Complement 部分指 Hsc((H_{X ho} H_{ ho ho}^{-1} H_{ ho X}))和 bsc((H_{X ho} H_{ ho ho}^{-1} J_{ ho}^T r))。

    4.1 AccumulatedSCHessianSSE::addPoint()优化的局部信息计算

    最终得到的 Hsc 是 68x68 的矩阵,bsc 是 68x1 的矩阵。

    4.1.1 局部变量

    p->HdiF对应 (left( sum_{i=1}^N {partial r^{(i)} over partial ho^{(j)}}^T{partial r^{(i)} over partial ho^{(j)}} ight)^{-1}),1x1。在前面的 AccumulatedTopHessianSSE::addPoint() 已经进行了累加,而这个是一个 Scalar 量,现在只需要求一个倒数就行了。

    Hcd对应 (left( sum_{i=1}^N {partial r^{(i)} over partial C}^T {partial r^{(i)} over partial ho^{(j)}} ight)),4x1。

    p->bdSumF对应当前下,所有 ({partial r_{21} over partial ho_1}^T r_{21}) 的求和,即 (left( sum_{i=1}^N {partial r^{(i)} over partial ho^{(j)}}^T r^{(i)} ight)),1x1。

    r1->JpJdF对应当前residual下,所有 ({partial r_{21} over partial X_{21}}^T {partial r_{21} over partial ho_1} = egin{bmatrix} {partial r_{21} over partial xi_{21}}^T{partial r_{21} over partial ho_1} \ {partial r_{21} over partial l_{21}}^T{partial r_{21} over partial ho_1}end{bmatrix}) 的和。(left( {partial r^{(i)} over partial X_{tj}}^T {partial r^{(i)} over partial ho^{(j)}} ight)),8x1。(t) 表示 target,也就是 (r^{(i)}) 联系的另外一个 frame。

    4.1.2 成员变量更新

    accHcc[tid].update(Hcd,Hcd,p->HdiF)是在accHcc中加上了针对当前Hcc,对应 (left( sum_{i=1}^N {partial r^{(i)} over partial C}^T {partial r^{(i)} over partial ho^{(j)}} ight) left( sum_{i=1}^N {partial r^{(i)} over partial ho^{(j)}}^T{partial r^{(i)} over partial ho^{(j)}} ight)^{-1} left( sum_{i=1}^N {partial r^{(i)} over partial C}^T {partial r^{(i)} over partial ho^{(j)}} ight)^T)

    accbc[tid].update(Hcd, p->bdSumF * p->HdiF)是在accbc中加上了针对当前bc,对应 (left( sum_{i=1}^N {partial r^{(i)} over partial C}^T {partial r^{(i)} over partial ho^{(j)}} ight) left( sum_{i=1}^N {partial r^{(i)} over partial ho^{(j)}}^T{partial r^{(i)} over partial ho^{(j)}} ight)^{-1} left( sum_{i=1}^N {partial r^{(i)} over partial ho^{(j)}}^T r^{(i)} ight))

    注意accE, accEB, accD都是数组。

    accE[tid][r1ht].update(r1->JpJdF, Hcd, p->HdiF)是在accE[r1ht]中加上了针对当前residual(target, host)的 (left( {partial r^{(k)} over partial X_{th}}^T {partial r^{(k)} over partial ho^{(j)}} ight) left( sum_{i=1}^N {partial r^{(i)} over partial ho^{(j)}}^T{partial r^{(i)} over partial ho^{(j)}} ight)^{-1} left( sum_{i=1}^N {partial r^{(i)} over partial C}^T {partial r^{(i)} over partial ho^{(j)}} ight)^T)。注,当前residual的 index 是 k,联系 t, h 两个 frame。对当前的所有 residual 求和完成之后,accE[t, h]对应 (left( sum_{i=1}^N {partial r^{(i)} over partial X_{th}}^T {partial r^{(i)} over partial ho^{(j)}} ight) left( sum_{i=1}^N {partial r^{(i)} over partial ho^{(j)}}^T{partial r^{(i)} over partial ho^{(j)}} ight)^{-1} left( sum_{i=1}^N {partial r^{(i)} over partial C}^T {partial r^{(i)} over partial ho^{(j)}} ight)^T)

    accEB[tid][r1ht].update(r1->JpJdF,p->HdiF*p->bdSumF)是在accEB中加上了针对当前residual(left( {partial r^{(k)} over partial X_{th}}^T {partial r^{(k)} over partial ho^{(j)}} ight) left( sum_{i=1}^N {partial r^{(i)} over partial ho^{(j)}}^T{partial r^{(i)} over partial ho^{(j)}} ight)^{-1} left( sum_{i=1}^N {partial r^{(i)} over partial ho^{(j)}}^T r^{(i)} ight)^T)。注,当前residual的 index 是 k,联系 t, h 两个 frame。对当前的所有 residual 求和完成之后,accEB[t, h]对应 (left( sum_{i=1}^N {partial r^{(i)} over partial X_{th}}^T {partial r^{(i)} over partial ho^{(j)}} ight) left( sum_{i=1}^N {partial r^{(i)} over partial ho^{(j)}}^T{partial r^{(i)} over partial ho^{(j)}} ight)^{-1} left( sum_{i=1}^N {partial r^{(i)} over partial ho^{(j)}}^T r^{(i)} ight)^T)

    accD[tid][r1ht+r2->targetIDX*nFrames2].update(r1->JpJdF, r2->JpJdF, p->HdiF)对应当前residual``r1与相同下所有residual``r2r1, r2可相同),即 h2 == h1 两个 residual 同 host。单个更新是在accD[t2,t1,h1]加上的东西是 (left( {partial r_1 over partial X_{t_1h_1}}^T {partial r_1 over partial ho^{(j)}} ight) left( sum_{i=1}^N {partial r^{(i)} over partial ho^{(j)}}^T{partial r^{(i)} over partial ho^{(j)}} ight)^{-1} left( {partial r_2 over partial X_{t_2h_1}}^T {partial r_2 over partial ho^{(j)}} ight)^T)。在对当前residual``r1累加完成之后,accD[t2,t1,h1]加上的东西是 (left( {partial r_1 over partial X_{t_1h_1}}^T {partial r_1 over partial ho^{(j)}} ight) left( sum_{i=1}^N {partial r^{(i)} over partial ho^{(j)}}^T{partial r^{(i)} over partial ho^{(j)}} ight)^{-1} left( sum_{i=1}^N {partial r^{(i)} over partial X_{t_2h_1}}^T {partial r^{(i)} over partial ho^{(j)}} ight)^T)。 在对当前累加完成之后,accD[t2,t1,h1]加上的东西是 (left( sum_{i=1}^N {partial r^{(i)} over partial X_{t_1h_1}}^T {partial r^{(i)} over partial ho^{(j)}} ight) left( sum_{i=1}^N {partial r^{(i)} over partial ho^{(j)}}^T{partial r^{(i)} over partial ho^{(j)}} ight)^{-1} left( sum_{i=1}^N {partial r^{(i)} over partial X_{t_2h_1}}^T {partial r^{(i)} over partial ho^{(j)}} ight)^T)

    4.1.3 更新完成后成员变量的意义

    这个更新完成是指遍历了所有点之后,请结合 AccumulatedTopHessianSSE::stitchDouble 看。

    所以accHcc对应 (sum_{j=1}^M left( sum_{i=1}^N {partial r^{(i)} over partial C}^T {partial r^{(i)} over partial ho^{(j)}} ight) left( sum_{i=1}^N {partial r^{(i)} over partial ho^{(j)}}^T{partial r^{(i)} over partial ho^{(j)}} ight)^{-1} left( sum_{i=1}^N {partial r^{(i)} over partial C}^T {partial r^{(i)} over partial ho^{(j)}} ight)^T),4x4。

    所以accbc对应 (sum_{j=1}^M left( sum_{i=1}^N {partial r^{(i)} over partial C}^T {partial r^{(i)} over partial ho^{(j)}} ight) left( sum_{i=1}^N {partial r^{(i)} over partial ho^{(j)}}^T{partial r^{(i)} over partial ho^{(j)}} ight)^{-1} left( sum_{i=1}^N {partial r^{(i)} over partial ho^{(j)}}^T r^{(i)} ight)),4x1。

    所以accE[t,h](t 行 h 列)对应 (sum_{j=1}^M left( sum_{i=1}^N {partial r^{(i)} over partial X_{th}}^T {partial r^{(i)} over partial ho^{(j)}} ight) left( sum_{i=1}^N {partial r^{(i)} over partial ho^{(j)}}^T{partial r^{(i)} over partial ho^{(j)}} ight)^{-1} left( sum_{i=1}^N {partial r^{(i)} over partial C}^T {partial r^{(i)} over partial ho^{(j)}} ight)^T),8x4。

    所以accEB[t,h]对应 (sum_{j=1}^M left( sum_{i=1}^N {partial r^{(i)} over partial X_{th}}^T {partial r^{(i)} over partial ho^{(j)}} ight) left( sum_{i=1}^N {partial r^{(i)} over partial ho^{(j)}}^T{partial r^{(i)} over partial ho^{(j)}} ight)^{-1} left( sum_{i=1}^N {partial r^{(i)} over partial ho^{(j)}}^T r^{(i)} ight)^T),8x1。

    所以accD[t2,t1,h1]对应 (sum_{j=1}^M left( sum_{i=1}^N {partial r^{(i)} over partial X_{t_1h_1}}^T {partial r^{(i)} over partial ho^{(j)}} ight) left( sum_{i=1}^N {partial r^{(i)} over partial ho^{(j)}}^T{partial r^{(i)} over partial ho^{(j)}} ight)^{-1} left( sum_{i=1}^N {partial r^{(i)} over partial X_{t_2h_1}}^T {partial r^{(i)} over partial ho^{(j)}} ight)^T)

    4.2 AccumulatedSCHessianSSE::stitchDoubleInternal()优化信息统计

    下面该乘 Adj(adHost, adTarget) 就乘,为了方便,我下面就不说了。

    accHcc加到Hsc.block<CPARS, CPARS>(0,0)

    accbc加到bsc.head<CPARS>()

    accE[t,h]加到Hsc.block<8, CPARS>(0,t*8), Hsc.block<8, CPARS>(0,h*8),以及转置后加到对角对称位置Hsc.block<CPARS, 8>(t*8,0), Hsc.block<CPARS, 8>(h*8,0)

    accEB[t,h]加到bsc.segment<8>(t*8), bsc.segment<8>(h*8)

    accD[t2,t1,h1]加到Hsc.block<8,8>(h1*8, h1*8), Hsc.block<8,8>(t1*8, t2*8), Hsc.block<8,8>(t1*8, h1*8), Hsc.block<8,8>(h1*8, t2*8)

    Hsc.block<8,8>(t, h)对应公式 (sum_{j=1}^M left( sum_{i=1}^N {partial r^{(i)} over partial X_{t}}^T {partial r^{(i)} over partial ho^{(j)}} ight) left( sum_{i=1}^N {partial r^{(i)} over partial ho^{(j)}}^T{partial r^{(i)} over partial ho^{(j)}} ight)^{-1} left( sum_{i=1}^N {partial r^{(i)} over partial X_{h}}^T {partial r^{(i)} over partial ho^{(j)}} ight)^T)

  • 相关阅读:
    拉格朗日乘数法
    线性判别分析(Linear Discriminant Analysis)
    有监督学习 和 无监督学习
    Jenkins入门知识
    vs技巧总结
    jenkins 神奇变量
    ubuntu12.04 折腾流水
    ubuntu 12.04 右上角的网络连接图标突然消失不见
    ubuntu 12.04 上网体验
    JIRA 初体验
  • 原文地址:https://www.cnblogs.com/JingeTU/p/8586172.html
Copyright © 2020-2023  润新知