【题目描述】
为了准备一个独特的颁奖典礼,组织者在会场的一片矩形区域(可看做是平面直角坐标系的第一象限)铺上一些矩形地毯。一共有n张地毯,编号从1到n。现在将这些地毯按照编号从小到大的顺序平行于坐标轴先后铺设,后铺的地毯覆盖在前面已经铺好的地毯之上。地毯铺设完成后,组织者想知道覆盖地面某个点的最上面的那张地毯的编号。注意:在矩形地毯边界和四个顶点上的点也算被地毯覆盖。
输入输出样例1说明:如下图,1号地毯用实线表示,2号地毯用虚线表示,3号用双实线表示,覆盖点(2,2)的最上面一张地毯是3号地毯。
输入输出样例2说明:如下图,1号地毯用实线表示,2号地毯用虚线表示,3号用双实线表示,覆盖点(4,5)的最上面没有一张地毯。
【输入】
第一行,一个整数n,表示总共有n张地毯。
接下来的n行中,第i+1行表示编号i的地毯的信息,包含四个正整数a,b,g,k,每两个整数之间用一个空格隔开,分别表示铺设地毯的左下角的坐标(a,b)以及地毯在x轴和y轴方向的长度。
第n+2行包含两个正整数x和y,表示所求的地面的点的坐标(x,y)。
【输出】
输出共1行,一个整数,表示所求的地毯的编号;若此处没有被地毯覆盖则输出-1。
【输入样例】
3 1 0 2 3 0 2 3 3 2 1 3 3 2 2
【输出样例】
3
【提示】
样例输入#2:
3 1 0 2 3 0 2 3 3 2 1 3 3 4 5
样例输出#2:
-1
【数据范围】
全部数据,1≤n≤10000
1.这应该是我在博客里写的第一个数组的题哈。
按规矩还是讲一下一开始看到题的感受。
话说这好像是NOIP的原题,以前见过但没做,
作为一本通一维数组的最后一道题,
刚看还是觉得不怎么好做的。
但确实一点技术含量都没有...
2.又到了分析题干的时间了。
首先看到这个题,直接给了个直角坐标系,
顺便还给了我们所要设的所有参数,
首先我们可以找到输入后不变的量,也就是那个定点的坐标,
我们把变量(就是地毯,因为有好几块)和这个坐标循环比较。
比较好得关系:
如果这个点在这块地毯上,
则它的横坐标必在地毯横向两端点横坐标的范围内,
纵坐标比在地毯纵向两端点的范围之内。
3.好了其他也没什么可讲的了,
直接对着正解走一遍吧
#include<iostream> using namespace std; int main() { int n,x,y;//定义地毯张数和定点坐标 int a[10001],b[10001],g[10001],k[10001];//定义地毯 int i; cin>>n; for(i=1;i<=n;i++)//循环输入n张地毯的信息 { cin>>a[i]>>b[i]; cin>>g[i]>>k[i]; } cin>>x>>y;//输入定点坐标 for(i=n;i>=1;i--)//循环都好理解,i--的目的是从上往下对照地毯,实现输出最上面的地毯。 { if((x>=a[i]&&x<=a[i]+g[i]) && (y>=b[i]&&y<=b[i]+k[i]))//边界条件 { cout<<i<<endl;//输出地毯编号 return 0; } } cout<<-1<<endl;//该定点没有被任何地毯覆盖 return 0; }
嗯对就是这样。
4.喜闻乐见的总结时间又到了:
话说这个题真的非常水,
其实我写着博客的时候,
就觉得这个题其实没什么特殊的,
数组的题,
特别是一维数组的题,我觉得都还好。
关键是细心,
对于边界条件的把控,
以及题干中一些比较特殊的要求也要注意,
比如这个题中要求输出最上面地毯的编号。
细心,千万细心!