Beautiful Sequence
[Time Limit: 1000 msquad Memory Limit: 256 MB
]
首先我们可以考虑到 (0) 只能 和 (1) 放在一起、(3) 只能和 (2) 放在一起,那么我们想办法先把 (0) 和 (3) 凑出来,最后就剩下 (1) 和 (2) 了,我们只要把他们放在一起就可以了。
所以我们可以贪心考虑三个 (string),分别长成 (0101...0101)、(2323...2323)、(1212...1212) 这样的,那么现在的问题就是把这三个 (string) 合并起来,那么完全可以把他们全排列并二进制枚举每个 (string) 是否翻转,然后 (check) 一遍。
view
#include <map>
#include <set>
#include <list>
#include <ctime>
#include <cmath>
#include <stack>
#include <queue>
#include <cfloat>
#include <string>
#include <vector>
#include <cstdio>
#include <bitset>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#define lowbit(x) x & (-x)
#define mes(a, b) memset(a, b, sizeof a)
#define fi first
#define se second
#define pb push_back
#define pii pair<int, int>
#define INOPEN freopen("in.txt", "r", stdin)
#define OUTOPEN freopen("out.txt", "w", stdout)
typedef unsigned long long int ull;
typedef long long int ll;
const int maxn = 2e5 + 10;
const int maxm = 1e5 + 10;
const ll mod = 1e9 + 7;
const ll INF = 1e18 + 100;
const int inf = 0x3f3f3f3f;
const double pi = acos(-1.0);
const double eps = 1e-8;
using namespace std;
int n, m;
int cas, tol, T;
int a, b, c, d;
string s[4], ss;
bool ok(string a, string b, string c) {
int lena = a.size(), lenb = b.size(), lenc = c.size();
int len = lena+lenb+lenc;
for(int i=0; i<7; i++) {
if(i&(1<<(0))) {
reverse(a.begin(), a.end());
}
if(i&(1<<(1))) {
reverse(b.begin(), b.end());
}
if(i&(1<<(2))) {
reverse(c.begin(), c.end());
}
ss = a+b+c;
if(i&(1<<(0))) {
reverse(a.begin(), a.end());
}
if(i&(1<<(1))) {
reverse(b.begin(), b.end());
}
if(i&(1<<(2))) {
reverse(c.begin(), c.end());
}
int flag = 1;
for(int i=1; i<len; i++) {
if(abs(ss[i]-ss[i-1])!=1) {
flag = 0;
break;
}
}
if(flag) {
printf("YES
");
for(int i=0; i<len; i++) {
printf("%c%c", ss[i], i==len-1 ? '
':' ');
}
return true;
}
}
return false;
}
int main() {
scanf("%d%d%d%d", &a, &b, &c, &d);
s[1] = "";
while(a&&b) {
s[1] += "01";
a--, b--;
}
if(a) {
s[1] += "0";
a--;
}
if(b) {
s[1] = "1"+s[1];
b--;
}
s[3] = "";
while(c&&d) {
s[3] += "23";
c--, d--;
}
if(c) {
s[3] += "2";
c--;
}
if(d) {
s[3] = "3"+s[3];
d--;
}
s[2] = "";
while(b&&c) {
s[2] += "12";
b--, c--;
}
if(b) {
s[2] += "1";
b--;
}
if(c) {
s[2] = "2"+s[2];
c--;
}
if(a||b||c||d) return 0*puts("NO");
do {
if(ok(s[1], s[2], s[3]))
return 0;
} while(next_permutation(s+1, s+1+3));
puts("NO");
return 0;
}
Beautiful Mirrors
[Time Limit: 2000 msquad Memory Limit: 256 MB
]
首先令 (dp[i]) 表示从第 (i) 天到结束所需要的期望天数,为了方便,可以假设 (n+1) 天为结束位置,那么 (dp[n+1] = 0)。
对于 (1<=i<=n),有 (dp[i] = frac{p_i*dp[i+1] + (100-p_i)*dp[1]}{100}+1)
然后一直带进去,最后可以发现 (dp[1]) 可以表示为
[ dp[1] = A*dp[1] + B + 1
]
其中 (A、B) 都是具体的数字,那么就得到的 (dp[1]) 的值。
view
#include <map>
#include <set>
#include <list>
#include <ctime>
#include <cmath>
#include <stack>
#include <queue>
#include <cfloat>
#include <string>
#include <vector>
#include <cstdio>
#include <bitset>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#define lowbit(x) x & (-x)
#define mes(a, b) memset(a, b, sizeof a)
#define fi first
#define se second
#define pb push_back
#define pii pair<int, int>
#define INOPEN freopen("in.txt", "r", stdin)
#define OUTOPEN freopen("out.txt", "w", stdout)
typedef unsigned long long int ull;
typedef long long int ll;
const int maxn = 2e5 + 10;
const int maxm = 1e5 + 10;
const ll mod = 998244353;
const ll INF = 1e18 + 100;
const int inf = 0x3f3f3f3f;
const double pi = acos(-1.0);
const double eps = 1e-8;
using namespace std;
int n, m;
int cas, tol, T;
int p[maxn];
ll fpow(ll a, ll b) {
ll ans = 1;
while(b) {
if(b&1) ans = ans*a%mod;
a = a*a%mod;
b >>= 1;
}
return ans;
}
int main() {
ll M = fpow(100ll, mod-2);
scanf("%d", &n);
for(int i=1; i<=n; i++) {
scanf("%d", &p[i]);
}
ll b = 0, c = 0;
ll tmpb = 1;
for(int i=1; i<=n; i++) {
b += tmpb*(100ll-p[i])%mod*M%mod;
c += tmpb;
tmpb *= p[i]*M%mod;
b %= mod, c %=mod, tmpb %= mod;
}
b = mod-b+1;
b = (b%mod+mod)%mod;
ll ans = c*fpow(b, mod-2)%mod;
printf("%lld
", ans);
return 0;
}
Beautiful Bracket Sequence (easy version)
[Time Limit: 2000 msquad Memory Limit: 256 MB
]
令 (dp[i][j]) 表示从 (i) 到 (j) 区间内,所有情况的括号最深深度之和。
转移的时候令 (dp[i][i] = 0),(dp[i][i+1]) 为 (s[i]) 和 (s[i+1]) 能否组成 (())。
对于更大的区间,只需要考虑最左和最右端点就可以。
-
如果(s[i]) 可以放成 (()
- 如果 (s[j]) 可以放成 ((),(dp[i][j] += dp[i][j-1])
- 如果 (s[j]) 可以放成 ()),(dp[i][j] += dp[i+1][j-1] + 2^k),(k) 代表 ([i+1,j-1]) 这段内 (?) 的个数。
-
如果 (s[i]) 可以放成 ())
- 如果 (s[j]) 可以放成 ((),(dp[i][j] += dp[i+1][j-1])
- 如果 (s[j]) 可以放成 ()),(dp[i][j] += dp[i+1][j])
然后有一部分会被重复计算,也就是 (dp[i+1][j-1]) 这一段,所以只要顺便记录一下转移过程中计算了几次这一段,然后扣掉多计算的就可以了。
view
#include <map>
#include <set>
#include <list>
#include <ctime>
#include <cmath>
#include <stack>
#include <queue>
#include <cfloat>
#include <string>
#include <vector>
#include <cstdio>
#include <bitset>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#define lowbit(x) x & (-x)
#define mes(a, b) memset(a, b, sizeof a)
#define fi first
#define se second
#define pb push_back
#define pii pair<int, int>
#define INOPEN freopen("in.txt", "r", stdin)
#define OUTOPEN freopen("out.txt", "w", stdout)
typedef unsigned long long int ull;
typedef long long int ll;
const int maxn = 2e3 + 10;
const int maxm = 1e5 + 10;
const ll mod = 998244353;
const ll INF = 1e18 + 100;
const int inf = 0x3f3f3f3f;
const double pi = acos(-1.0);
const double eps = 1e-8;
using namespace std;
int n, m, TT;
int cas, tol;
int a[maxn] = {0};
char s[maxn];
ll dp[maxn][maxn];
ll fpow(ll a, ll b) {
ll ans = 1;
while(b) {
if(b&1) ans = ans*a%mod;
a = a*a%mod;
b >>= 1;
}
return ans;
}
int main() {
scanf("%s", s+1);
n = strlen(s+1);
for(int i=1; i<=n; i++) {
a[i] = a[i-1]+(s[i]=='?');
dp[i][i] = 0;
dp[i][i+1] = (i+1<=n && s[i]!=')' && s[i+1]!='(');
}
for(int d=3; d<=n; d++) {
for(int i=1, j=d, c; j<=n; i++, j++) {
dp[i][j] = 0, c = -1;
if(s[i] != ')') {
if(s[j] != ')') dp[i][j] += dp[i][j-1], c++;
if(s[j] != '(') dp[i][j] += dp[i+1][j-1] + fpow(2, a[j-1]-a[i]);
}
if(s[i] != '(') {
if(s[j] != ')') dp[i][j] += dp[i+1][j-1], c++;
if(s[j] != '(') dp[i][j] += dp[i+1][j], c++;
}
dp[i][j] -= max(c, 0)*dp[i+1][j-1];
dp[i][j] %= mod;
// printf("dp[%d][%d] = %lld
", i, j, dp[i][j]);
}
}
printf("%lld
", dp[1][n]);
return 0;
}