Fish eating fruit
[Time Limit: 1000 ms quad Memory Limit: 262144 kB
]
题意
大体的题意就是给出一棵树,求每一对点之间的距离,然后把该距离存在距离 (mod 3) 的位置,输出总和。
思路
令两个 (dp) 数组和两个辅助 (dp) 的数组。
(dp1[i][j]) 表示从 (i) 为起点往下到各个点距离 (mod 3) 后为 (j) 的距离总和。
(cnt1[i][j]) 表示以 (i) 为起点往下到各个点距离 (mod 3) 后为 (j) 的节点个数。
(dp2[i][j]) 表示从 (i) 起点往上一步后到各个点距离 (mod 3) 后为 (j) 的距离总和。
(cnt2[i][j]) 表示以 (i) 为起点往上一步后到各个点距离 (mod 3) 后为 (j) 的节点个数。
对于两个 (dp) 分别跑一遍 (dfs)
对于 (dp1) 比较好处理,直接往下 (dfs)
以 (u) 开始的答案等于从 (v) 开始的答案加上这一条边 (w) 的贡献,可以得到
[ dp1[u][(j+w)\%3] = sum (dp1[v][j] + cnt1[v][j]*w)\
cnt1[u][(j+w)\%3] = sum cnt1[v][j]
]
对于 (dp2) 会比较麻烦,需要用 (fa) 节点向上的贡献在加上 (fa) 节点往下的贡献在减去 (fa) 节点往 (u) 走的贡献。这些节点就是 (u) 往上走一步后可以走到的所有节点。这样算出真实的节点数和距离总和,然后 (u) 才能开始转移。
设 (faw) 为从 (u) 到 (fa) 的路径长度
计算真实的节点数:
[ c[j] = cnt2[fa][j]+cnt1[fa][j]\
c[(j+faw)\%3] -= cnt1[u][j]
]
计算真实的距离总和:
[ d[j] = dp2[fa][j]+dp1[fa][j] \
d[(j+faw)\%3] -= dp1[u][0]+cnt1[u][j]*faw
]
则最后的 (dp2) 就可以利用 (d) 和 (c) 得到了
[ dp2[u][(j+faw)\%3] = c[j]*faw+d[j] \
cnt2[u][(j+faw)\%3] = c[j]
]
/***************************************************************
> File Name : a.cpp
> Author : Jiaaaaaaaqi
> Created Time : Mon 16 Sep 2019 08:55:33 PM CST
***************************************************************/
#include <map>
#include <set>
#include <list>
#include <ctime>
#include <cmath>
#include <stack>
#include <queue>
#include <cfloat>
#include <string>
#include <vector>
#include <cstdio>
#include <bitset>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <unordered_map>
#define lowbit(x) x & (-x)
#define mes(a, b) memset(a, b, sizeof a)
#define fi first
#define se second
#define pb push_back
#define pii pair<int, int>
typedef unsigned long long int ull;
typedef long long int ll;
const int maxn = 1e5 + 10;
const int maxm = 1e5 + 10;
const ll mod = 1e9 + 7;
const ll INF = 1e18 + 100;
const int inf = 0x3f3f3f3f;
const double pi = acos(-1.0);
const double eps = 1e-8;
using namespace std;
int n, m;
int cas, tol, T;
vector< pii > vv[maxn];
ll cnt1[maxn][3], cnt2[maxn][3];
ll dp1[maxn][3], dp2[maxn][3];
void dfs1(int u, int fa) {
cnt1[u][0] = 1;
for(auto i : vv[u]) {
int v = i.fi, w = i.se;
if(v == fa) continue;
dfs1(v, u);
dp1[u][(0+w)%3] += (cnt1[v][0]*w%mod+dp1[v][0])%mod;
dp1[u][(1+w)%3] += (cnt1[v][1]*w%mod+dp1[v][1])%mod;
dp1[u][(2+w)%3] += (cnt1[v][2]*w%mod+dp1[v][2])%mod;
for(int j=0; j<3; j++) dp1[u][j] %= mod;
cnt1[u][(0+w)%3] += cnt1[v][0];
cnt1[u][(1+w)%3] += cnt1[v][1];
cnt1[u][(2+w)%3] += cnt1[v][2];
}
}
void dfs2(int u, int fa) {
if(u!=1) {
int faw;
for(auto i : vv[u]) {
if(i.fi == fa) {
faw = i.se;
break;
}
}
int c[3] = { 0 };
c[0] = cnt2[fa][0]+cnt1[fa][0];
c[1] = cnt2[fa][1]+cnt1[fa][1];
c[2] = cnt2[fa][2]+cnt1[fa][2];
c[(0+faw)%3] -= cnt1[u][0];
c[(1+faw)%3] -= cnt1[u][1];
c[(2+faw)%3] -= cnt1[u][2];
ll d[3] = { 0 };
d[0] = (dp2[fa][0]+dp1[fa][0])%mod;
d[1] = (dp2[fa][1]+dp1[fa][1])%mod;
d[2] = (dp2[fa][2]+dp1[fa][2])%mod;
d[(0+faw)%3] = ((d[(0+faw)%3] - (cnt1[u][0]*faw%mod+dp1[u][0])%mod+mod)%mod+mod)%mod;
d[(1+faw)%3] = ((d[(1+faw)%3] - (cnt1[u][1]*faw%mod+dp1[u][1])%mod+mod)%mod+mod)%mod;
d[(2+faw)%3] = ((d[(2+faw)%3] - (cnt1[u][2]*faw%mod+dp1[u][2])%mod+mod)%mod+mod)%mod;
dp2[u][(0+faw)%3] = (c[0]*faw%mod+d[0])%mod;
dp2[u][(1+faw)%3] = (c[1]*faw%mod+d[1])%mod;
dp2[u][(2+faw)%3] = (c[2]*faw%mod+d[2])%mod;
cnt2[u][(0+faw)%3] += c[0];
cnt2[u][(1+faw)%3] += c[1];
cnt2[u][(2+faw)%3] += c[2];
}
for(auto i : vv[u]) {
int v = i.fi, w = i.se;
if(v == fa) continue;
dfs2(v, u);
}
}
int main() {
// freopen("in", "r", stdin);
while(~scanf("%d", &n)) {
for(int i=1; i<=n; i++) {
vv[i].clear();
}
mes(dp1, 0), mes(dp2, 0);
mes(cnt1, 0), mes(cnt2, 0);
for(int i=1, u, v, w; i<n; i++) {
scanf("%d%d%d", &u, &v, &w);
u++, v++;
vv[u].pb(make_pair(v, w));
vv[v].pb(make_pair(u, w));
}
dfs1(1, 0);
dfs2(1, 0);
// for(int i=1; i<=n; i++) {
// for(int j=0; j<3; j++) {
// printf("dp1[%d][%d] = %lld, cnt1[%d][%d] = %lld
", i, j, dp1[i][j], i, j, cnt1[i][j]);
// }
// }
// cout << "-----------------" << endl;
// for(int i=1; i<=n; i++) {
// for(int j=0; j<3; j++) {
// printf("dp2[%d][%d] = %lld, cnt2[%d][%d] = %lld
", i, j, dp2[i][j], i, j, cnt2[i][j]);
// }
// }
ll ans0, ans1, ans2;
ans0 = ans1 = ans2 = 0;
for(int i=1; i<=n; i++) {
ans0 = (ans0+dp1[i][0]+dp2[i][0])%mod;
ans1 = (ans1+dp1[i][1]+dp2[i][1])%mod;
ans2 = (ans2+dp1[i][2]+dp2[i][2])%mod;
}
printf("%lld %lld %lld
", ans0, ans1, ans2);
}
return 0;
}