0x00 概述
在进行线性回归分析时,容易出现自变量(解释变量)之间彼此相关的现象,我们称这种现象为多重共线性。
适度的多重共线性不成问题,但当出现严重共线性问题时,会导致分析结果不稳定,出现回归系数的符号与实际情况完全相反的情况。
本应该显著的自变量不显著,本不显著的自变量却呈现出显著性,这种情况下就需要消除多重共线性的影响。
0x01 共线性出现的原因
多重共线性问题就是指一个解释变量的变化引起另一个解释变量地变化。
原本自变量应该是各自独立的,根据回归分析结果,能得知哪些因素对因变量Y有显著影响,哪些没有影响。
如果各个自变量x之间有很强的线性关系,就无法固定其他变量,也就找不到x和y之间真实的关系了。
除此以外,多重共线性的原因还可能包括:
- 数据不足。在某些情况下,收集更多数据可以解决共线性问题。
- 错误地使用虚拟变量。(比如,同时将男、女两个虚拟变量都放入模型,此时必定出现共线性,称为完全共线性)
0x02 共线性的判别指标
有多种方法可以检测多重共线性,较常使用的是回归分析中的VIF值,VIF值越大,多重共线性越严重。一般认为VIF大于10时(严格是5),代表模型存在严重的共线性问题。
有时候也会以容差值作为标准,容差值=1/VIF,所以容差值大于0.1则说明没有共线性(严格是大于0.2),VIF和容差值有逻辑对应关系,两个指标任选其一即可。
除此之外,直接对自变量进行相关分析,查看相关系数和显著性也是一种判断方法。如果一个自变量和其他自变量之间的相关系数显著,则代表可能存在多重共线性问题。
0x03 多重共线性处理方法
多重共线性是普遍存在的,通常情况下,如果共线性情况不严重(VIF<5),不需要做特别的处理。如存在严重的多重共线性问题,可以考虑使用以下几种方法处理:
3.1 手动移除出共线性的变量
先做下相关分析,如果发现某两个自变量X(解释变量)的相关系数值大于0.7,则移除掉一个自变量(解释变量),然后再做回归分析。此方法是最直接的方法,但有的时候我们不希望把某个自变量从模型中剔除,这样就要考虑使用其他方法。
3.2 逐步回归法
让系统自动进行自变量的选择剔除,使用逐步回归将共线性的自变量自动剔除出去。此种解决办法有个问题是,可能算法会剔除掉本不想剔除的自变量,如果有此类情况产生,此时最好是使用岭回归进行分析。
3.3 增加样本容量
增加样本容量是解释共线性问题的一种办法,但在实际操作中可能并不太适合,原因是样本量的收集需要成本时间等。
3.4 岭回归
上述第1和第2种解决办法在实际研究中使用较多,但问题在于,如果实际研究中并不想剔除掉某些自变量,某些自变量很重要,不能剔除。此时可能只有岭回归最为适合了。
** 岭回归是当前解决共线性问题最有效的解释办法。
0x04 其他说明
多重共线性是普遍存在的,轻微的多重共线性问题可不采取措施,
如果VIF值大于10说明共线性很严重,这种情况需要处理,
如果VIF值在5以下不需要处理,
如果VIF介于5~10之间视情况而定。
如果模型仅用于预测,则只要拟合程度好,可不处理多重共线性问题,存在多重共线性的模型用于预测时,往往不影响预测结果。