- 原型:tf.nn.embedding_lookup(params, ids, partition_strategy='mod', name=None, validate_indices=True, max_norm=None)
- 实际上tf.nn.embedding_lookup的作用就是找到要寻找的embedding data中的对应的行下的vector。
- 简单地通过代码了解一下,ids为1行或者多行都囊括:
# -*- coding= utf-8 -*- import tensorflow as tf import numpy as np a = [[0.1, 0.2, 0.3], [1.1, 1.2, 1.3], [2.1, 2.2, 2.3], [3.1, 3.2, 3.3], [4.1, 4.2, 4.3]] a = np.asarray(a) idx1 = tf.Variable([0, 2, 3, 1], tf.int32) idx2 = tf.Variable([[0, 2, 3, 1], [4, 0, 2, 2]], tf.int32) out1 = tf.nn.embedding_lookup(a, idx1) out2 = tf.nn.embedding_lookup(a, idx2) init = tf.global_variables_initializer() with tf.Session() as sess: sess.run(init) print sess.run(out1) print out1 print '==================' print sess.run(out2) print out2
- 输出:
[[ 0.1 0.2 0.3] [ 2.1 2.2 2.3] [ 3.1 3.2 3.3] [ 1.1 1.2 1.3]] Tensor("embedding_lookup:0", shape=(4, 3), dtype=float64) ================== [[[ 0.1 0.2 0.3] [ 2.1 2.2 2.3] [ 3.1 3.2 3.3] [ 1.1 1.2 1.3]] [[ 4.1 4.2 4.3] [ 0.1 0.2 0.3] [ 2.1 2.2 2.3] [ 2.1 2.2 2.3]]] Tensor("embedding_lookup_1:0", shape=(2, 4, 3), dtype=float64)
-
维度讨论:在要寻找的embedding数据中下找对应的index下的vector进行拼接。永远是ids部分的维度(2x4)+embedding部分的维度(4x3)拼接(结果为2x4x3)。很明显,我们也可以得到,ids里面值是必须要小于等于embedding最大维度减一的。