pytorch实现学习率衰减
手动修改optimizer中的lr
使用for循环来手动人工进行learning rate的衰减
model = net()
LR = 0.01
optimizer = Adam(model.parameters(),lr = LR)
lr_list = []
for epoch in range(100):
if epoch % 5 == 0:
for p in optimizer.param_groups:
p['lr'] *= 0.9#注意这里
lr_list.append(optimizer.state_dict()['param_groups'][0]['lr'])
plt.plot(range(100),lr_list,color = 'r')
使用lr_scheduler
LambdaLR——lambda函数衰减
torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda, last_epoch=-1)
lr_lambda 会接收到一个int参数:epoch,然后根据epoch计算出对应的lr
。如果设置多个lambda函数的话,会分别作用于Optimizer中的不同的params_group
import numpy as np
lr_list = []
model = net()
LR = 0.01
optimizer = Adam(model.parameters(),lr = LR)
lambda1 = lambda epoch:np.sin(epoch) / epoch
scheduler = lr_scheduler.LambdaLR(optimizer,lr_lambda = lambda1)
for epoch in range(100):
scheduler.step()
lr_list.append(optimizer.state_dict()['param_groups'][0]['lr'])
plt.plot(range(100),lr_list,color = 'r')
StepLR——阶梯式衰减
torch.optim.lr_scheduler.StepLR(optimizer, step_size, gamma=0.1, last_epoch=-1)
每个一定的epoch,lr会自动乘以gamma
进行阶梯式衰减
⭐⭐⭐注意:pytorch1.1.0之后scheduler.step()
要放在optimizer.step()
之后!!!
lr_list = []
model = net()
LR = 0.01
optimizer = Adam(model.parameters(),lr = LR)
scheduler = lr_scheduler.StepLR(optimizer,step_size=5,gamma = 0.8)
for epoch in range(100):
scheduler.step()
lr_list.append(optimizer.state_dict()['param_groups'][0]['lr'])
plt.plot(range(100),lr_list,color = 'r')
MultiStepLR——多阶梯式衰减
torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones, gamma=0.1, last_epoch=-1)
三段式lr,epoch进入milestones范围内即乘以gamma,离开milestones范围之后再乘以gamma
。这种衰减方式也是在学术论文中最常见的方式,一般手动调整也会采用这种方法。
lr_list = []
model = net()
LR = 0.01
optimizer = Adam(model.parameters(),lr = LR)
scheduler = lr_scheduler.MultiStepLR(optimizer,milestones=[20,80],gamma = 0.9)
for epoch in range(100):
scheduler.step()
lr_list.append(optimizer.state_dict()['param_groups'][0]['lr'])
plt.plot(range(100),lr_list,color = 'r')
ExponentialLR——指数连续衰减
torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma, last_epoch=-1)
每个epoch中lr都乘以gamma
lr_list = []
model = net()
LR = 0.01
optimizer = Adam(model.parameters(),lr = LR)
scheduler = lr_scheduler.ExponentialLR(optimizer, gamma=0.9)
for epoch in range(100):
scheduler.step()
lr_list.append(optimizer.state_dict()['param_groups'][0]['lr'])
plt.plot(range(100),lr_list,color = 'r')
CosineAnnealingLR——余弦退火衰减
torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max, eta_min=0, last_epoch=-1)
T_max 对应1/2个cos周期所对应的epoch数值
eta_min 为最小的lr值,默认为0
ReduceLROnPlateau
torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.1, patience=10, verbose=False, threshold=0.0001, threshold_mode='rel', cooldown=0, min_lr=0, eps=1e-08)
在发现loss不再降低或者acc不再提高之后,降低学习率。
各参数意义如下:
mode:'min'模式检测metric是否不再减小,'max'模式检测metric是否不再增大;
factor: 触发条件后lr*=factor;
patience:不再减小(或增大)的累计次数;
verbose:触发条件后print;
threshold:只关注超过阈值的显著变化;
threshold_mode:有rel和abs两种阈值计算模式,rel规则:max模式下如果超过best(1+threshold)为显著,min模式下如果低于best(1-threshold)为显著;abs规则:max模式下如果超过best+threshold为显著,min模式下如果低于best-threshold为显著;
cooldown:触发一次条件后,等待一定epoch再进行检测,避免lr下降过速;
min_lr:最小的允许lr;
eps:如果新旧lr之间的差异小与1e-8,则忽略此次更新。