Discription
A string t is called nice if a string "2017" occurs in t as a subsequence but a string "2016" doesn't occur in t as a subsequence. For example, strings "203434107" and "9220617" are nice, while strings "20016", "1234" and "20167" aren't nice.
The ugliness of a string is the minimum possible number of characters to remove, in order to obtain a nice string. If it's impossible to make a string nice by removing characters, its ugliness is - 1.
Limak has a string s of length n, with characters indexed 1 through n. He asks you qqueries. In the i-th query you should compute and print the ugliness of a substring(continuous subsequence) of s starting at the index ai and ending at the index bi(inclusive).
Input
The first line of the input contains two integers n and q (4 ≤ n ≤ 200 000, 1 ≤ q ≤ 200 000) — the length of the string s and the number of queries respectively.
The second line contains a string s of length n. Every character is one of digits '0'–'9'.
The i-th of next q lines contains two integers ai and bi (1 ≤ ai ≤ bi ≤ n), describing a substring in the i-th query.
Output
For each query print the ugliness of the given substring.
Examples
8 3
20166766
1 8
1 7
2 8
4
3
-1
15 5
012016662091670
3 4
1 14
4 15
1 13
10 15
-1
2
1
-1
-1
4 2
1234
2 4
1 2
-1
-1
Note
In the first sample:
- In the first query, ugliness("20166766") = 4 because all four sixes must be removed.
- In the second query, ugliness("2016676") = 3 because all three sixes must be removed.
- In the third query, ugliness("0166766") = - 1 because it's impossible to remove some digits to get a nice string.
In the second sample:
- In the second query, ugliness("01201666209167") = 2. It's optimal to remove the first digit '2' and the last digit '6', what gives a string "010166620917", which is nice.
- In the third query, ugliness("016662091670") = 1. It's optimal to remove the last digit '6', what gives a nice string "01666209170".
建一个节点和字符集很少的有限状态自动机,然后对于线段树每个区间用一个矩阵记录 从一个状态 到 另一个状态的 最小代价。
因为这个矩阵是满足结合律的,所以直接做就行了。
#include<bits/stdc++.h> #define ll long long #define lc (o<<1) #define rc ((o<<1)|1) #define mid (l+r>>1) using namespace std; const int maxn=200005; struct node{ int a[5][5]; inline void init(){ memset(a,0x3f,sizeof(a));} node operator *(const node &u)const{ node r; r.init(); for(int k=0;k<5;k++) for(int i=0;i<5;i++) for(int j=0;j<5;j++) r.a[i][j]=min(r.a[i][j],a[i][k]+u.a[k][j]); return r; } }S[maxn*4+5],ANS; int n,m,le,ri; char s[maxn]; inline void Set(node &x,int y){ x.init(); for(int i=0;i<5;i++) x.a[i][i]=0; if(y==2) x.a[0][0]=1,x.a[0][1]=0; else if(!y) x.a[1][1]=1,x.a[1][2]=0; else if(y==1) x.a[2][2]=1,x.a[2][3]=0; else if(y==7) x.a[3][3]=1,x.a[3][4]=0; else if(y==6) x.a[3][3]=1,x.a[4][4]=1; } void build(int o,int l,int r){ if(l==r){ Set(S[o],s[l]-'0'); return;} build(lc,l,mid),build(rc,mid+1,r); S[o]=S[lc]*S[rc]; } void query(int o,int l,int r){ if(l>=le&&r<=ri){ ANS=ANS*S[o]; return;} if(le<=mid) query(lc,l,mid); if(ri>mid) query(rc,mid+1,r); } inline void solve(){ build(1,1,n); while(m--){ ANS.init(); for(int i=0;i<5;i++) ANS.a[i][i]=0; scanf("%d%d",&le,&ri),query(1,1,n); printf("%d ",ANS.a[0][4]<=n?ANS.a[0][4]:-1); } } int main(){ scanf("%d%d",&n,&m); scanf("%s",s+1); solve(); return 0; }