• 【bzoj1690/Usaco2007 Dec】奶牛的旅行——分数规划 最优比率环


    Description

    作为对奶牛们辛勤工作的回报,Farmer John决定带她们去附近的大城市玩一天。旅行的前夜,奶牛们在兴奋地讨论如何最好地享受这难得的闲暇。 很幸运地,奶牛们找到了一张详细的城市地图,上面标注了城市中所有L(2 <= L <= 1000)座标志性建筑物(建筑物按1..L顺次编号),以及连接这些建筑物的P(2 <= P <= 5000)条道路。按照计划,那天早上Farmer John会开车将奶牛们送到某个她们指定的建筑物旁边,等奶牛们完成她们的整个旅行并回到出发点后,将她们接回农场。由于大城市中总是寸土寸金,所有的道路都很窄,政府不得不把它们都设定为通行方向固定的单行道。 尽管参观那些标志性建筑物的确很有意思,但如果你认为奶牛们同样享受穿行于大城市的车流中的话,你就大错特错了。与参观景点相反,奶牛们把走路定义为无趣且令她们厌烦的活动。对于编号为i的标志性建筑物,奶牛们清楚地知道参观它能给自己带来的乐趣值F_i (1 <= F_i <= 1000)。相对于奶牛们在走路上花的时间,她们参观建筑物的耗时可以忽略不计。 奶牛们同样仔细地研究过城市中的道路。她们知道第i条道路两端的建筑物 L1_i和L2_i(道路方向为L1_i -> L2_i),以及她们从道路的一头走到另一头所需要的时间T_i(1 <= T_i <= 1000)。 为了最好地享受她们的休息日,奶牛们希望她们在一整天中平均每单位时间内获得的乐趣值最大。当然咯,奶牛们不会愿意把同一个建筑物参观两遍,也就是说,虽然她们可以两次经过同一个建筑物,但她们的乐趣值只会增加一次。顺便说一句,为了让奶牛们得到一些锻炼,Farmer John要求奶牛们参观至少2个建筑物。 请你写个程序,帮奶牛们计算一下她们能得到的最大平均乐趣值。

    Input

    * 第1行: 2个用空格隔开的整数:L 和 P

    * 第2..L+1行: 第i+1行仅有1个整数:F_i * 第L+2..L+P+1行: 第L+i+1行用3个用空格隔开的整数:L1_i,L2_i以及T_i, 描述了第i条道路。

    Output

    * 第1行: 输出1个实数,保留到小数点后2位(直接输出,不要做任何特殊的取 整操作),表示如果奶牛按题目中描述的一系列规则来安排她们的旅 行的话,她们能获得的最大平均乐趣值

    Sample Input

    5 7
    30
    10
    10
    5
    10
    1 2 3
    2 3 2
    3 4 5
    3 5 2
    4 5 5
    5 1 3
    5 2 2

    Sample Output

    6.00
     

     
    分析:
    首先分析最优解必然为一个单独的环(一定不会是环套环),为什么?我不知道,自己推一下吧......
    这样的话我们把边的利润定义为边指向的点i的利润e[i],把边的代价定义为指向的那个点的代价v[i],每个点选或不选的情况定义为x[i]。
    这样就把利润和代价都放在了边上。
    定义一个函数f(l)=l*sigma(v[i]*x[i])-sigma(e[i]*x[i])=sigma((l*v[i]-e[i])*x[i]),令d[i]=l*v[i]-e[i]。
    当f(l)<0时,l*sigma(v[i]*x[i])-sigma(e[i]*x[i])<0,即sigma(e[i]*x[i])/sigma(v[i]*x[i])>l,表明当前的选取方式能得到比当前l更大的解;
    当f(l)>0时,此时的解没有l优。
    因此最优的情况就是f(l)=0,此时d[i]=0,易知d[i]随l的增大而增大,所以可以二分l直到d[i]=0,此时的l就是最优解。
    注意是有向边,判断的话可以用类似于SPFA判负环那样的操作,具体实现看代码吧:
     1 #include<cstdio>
     2 #include<cstring>
     3 #include<algorithm>
     4 #define mem(a) memset(a,0,sizeof(a))
     5 const int N=1005,P=5005;
     6 const double eps=1e-7;
     7 int n,m,tot=0,first[N],a[N];
     8 double d[N];
     9 bool flag,ok[N];
    10 struct node{
    11     int ne,to,w;
    12     double v;
    13 }e[P*2];
    14 int read(){
    15     int ans=0,f=1;char c=getchar();
    16     while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}
    17     while(c>='0'&&c<='9'){ans=ans*10+c-48;c=getchar();}
    18     return ans*f;
    19 }
    20 void add(int u,int v,int w){
    21     e[++tot]=(node){first[u],v,w,0};first[u]=tot;
    22 }
    23 void dfs(int x){
    24     ok[x]=1;
    25     for(int i=first[x];i;i=e[i].ne){
    26         int to=e[i].to;
    27         if(d[to]>d[x]+e[i].v){
    28             if(ok[to]){flag=1;return;}
    29             d[to]=d[x]+e[i].v;
    30             dfs(to);
    31         }
    32     }
    33     ok[x]=0;
    34 }
    35 bool check(double x){
    36     flag=0;
    37     for(int i=1;i<=n;i++)ok[i]=d[i]=0;
    38     for(int i=1;i<=n;i++){dfs(i);if(flag)return 1;}
    39     return 0;
    40 }
    41 int main(){
    42     n=read();m=read();
    43     for(int i=1;i<=n;i++)a[i]=read();
    44     for(int j=1,uu,vv,z;j<=m;j++){
    45         uu=read();vv=read();z=read();
    46         add(uu,vv,z);
    47     }
    48     double l=0,r=1000.0,mid;
    49     while(r-l>eps){
    50         mid=(l+r)/2.0;
    51         for(int i=1;i<=n;i++){
    52         for(int j=first[i];j;j=e[j].ne){
    53             e[j].v=mid*e[j].w-a[e[j].to];
    54         }
    55     }
    56         if(check(mid))l=mid;
    57         else r=mid;
    58     }
    59     printf("%.2f",mid);
    60     return 0;
    61 }
    bzoj1690
  • 相关阅读:
    java Future模式的使用
    Objects源码解析
    VUE优秀的组件库总结
    数据库的一致性读,赃读,多线程与赃读,ACID,UNDO
    线程基础,多线程架构,高并发,线程安全基础知识
    程序员必备的开发利器
    spring security 实现登录验证码及记住我
    springboot 集成 spring security 自定义登录
    ELK整合SpringBoot日志收集
    ElasticSearch整合SpringBoot的API操作
  • 原文地址:https://www.cnblogs.com/JKAI/p/7542677.html
Copyright © 2020-2023  润新知