• CF1450F The Struggling Contestant


    Description

    To help those contestants who struggle a lot in contests, the headquarters of Codeforces are planning to introduce Division 5. In this new division, the tags of all problems will be announced prior to the round to help the contestants.

    The contest consists of $ n $ problems, where the tag of the $ i $ -th problem is denoted by an integer $ a_i $ .

    You want to AK (solve all problems). To do that, you must solve the problems in some order. To make the contest funnier, you created extra limitations on yourself. You do not want to solve two problems consecutively with the same tag since it is boring. Also, you are afraid of big jumps in difficulties while solving them, so you want to minimize the number of times that you solve two problems consecutively that are not adjacent in the contest order.

    Formally, your solve order can be described by a permutation $ p $ of length $ n $ . The cost of a permutation is defined as the number of indices $ i $ ( $ 1leq i< n$ ) where $ |p_{i+1}-p_i|>1 $ . You have the requirement that $ a_{p_i} e a_{p_{i+1}} $ for all $ 1leq i< n$ .

    You want to know the minimum possible cost of permutation that satisfies the requirement. If no permutations meet this requirement, you should report about it.

    Solution

    a数组中相邻的相同数字是不合法的,需要改变它们两个数的相对位置

    若一共有$k$对相邻的相同数,那么将数组分成$k+1$段,只关注每个段的左右端点的排列是否合法

    记$f(x)$为数$x$作为端点的次数,一个区间左右端点相同时仍计数两次

    存在可行解的条件为$max{f(x)} leq k+2$

    证明不想打,搬运官方题解https://codeforces.com/blog/entry/85348

    最终答案为$k+max{ 0,max{ f(x)}-k-2}$

    #include<iostream>
    #include<cstring>
    #include<cstdio>
    #include<cmath>
    using namespace std;
    int T,n,a[100005],f[100005],k,vst[100005],max1,max2;
    inline int read()
    {
        int f=1,w=0;
        char ch=0;
        while(ch<'0'||ch>'9'){if(ch=='-') f=-1;ch=getchar();}
        while(ch>='0'&&ch<='9') w=(w<<1)+(w<<3)+ch-'0',ch=getchar();
        return f*w;
    }
    int main()
    {
        T=read();
        for(;T;T--)
        {
            memset(f,0,sizeof(f)),memset(vst,0,sizeof(vst));
            n=read(),k=max1=max2=0;
            for(int i=1;i<=n;i++)
            {
                a[i]=read();
                vst[a[i]]++;
                if(i!=1&&a[i]==a[i-1])
                {
                    ++k;
                    f[a[i]]+=2;
                }
            }
            f[a[1]]++,f[a[n]]++;
            for(int i=1;i<=n;i++) max1=max(max1,vst[i]),max2=max(max2,f[i]);
            if(max1*2>n+1) puts("-1");
            else printf("%d
    ",k+max(0,max2-k-2));
        }
        return 0;
    }
    The Struggling Contestant
  • 相关阅读:
    【Java/加解密】将字符串后N位用0覆盖
    【Oracle】使用sqlldr命令行从csv文件获得数据导入Oracle数据库某表中
    【Java/shell】Java使用Runtime和Process调用dos命令
    【Java/shell/Oracle】Java使用Runtime和Process调用sqlldr命令向Oracle数据库某表批量塞入数据
    【依赖】使用Apache的Codec如base64需要引用的依赖
    【Java/FTP】使用apache.commons的FTPClient往FTP服务器上传下载文件
    Dapr云原生应用开发系列7:工作流集成
    rtop – 通过SSH监控远程主机
    2022年区块链影响最大的四个行业
    CentOS Linux 8生命周期结束
  • 原文地址:https://www.cnblogs.com/JDFZ-ZZ/p/14153091.html
Copyright © 2020-2023  润新知