• 关于软件性能指标,系统吞吐量TPS(QPS),用户并发的有关术语


    摘自今日头条 波波说运维 2018-10-17 00:08:35

    一、软件性能的关注点

    对一个软件做性能测试时需要关注那些性能呢?

    我们想想在软件设计、部署、使用、维护中一共有哪些角色的参与,然后再考虑这些角色各自关注的性能点是什么,又该关注什么?

    用户的角度

    用户关注的是用户操作的相应时间。

    管理员的角度:

    1、 响应时间

    2、 服务器资源使用情况是否合理

    3、 应用服务器和数据库资源使用是否合理

    4、 系统能否实现扩展

    5、 系统最多支持多少用户访问、系统最大业务处理量是多少

    6、 系统性能可能存在的瓶颈在哪里

    7、 更换那些设备可以提高性能

    8、 系统能否支持7×24小时的业务访问

    开发(设计)人员角度:

    1、 架构设计是否合理

    2、 数据库设计是否合理

    3、 代码是否存在性能方面的问题

    4、 系统中是否有不合理的内存使用方式

    5、 系统中是否存在不合理的线程同步方式

    6、 系统中是否存在不合理的资源竞争


    二、软件性能的几个主要术语

    1、响应时间:对请求作出响应所需要的时间

    网络传输时间:N1+N2+N3+N4

    应用服务器处理时间:A1+A3

    数据库服务器处理时间:A2

    响应时间=N1+N2+N3+N4+A1+A3+A2

    2、并发用户数的计算公式

    系统用户数:系统额定的用户数量,如一个OA系统,可能使用该系统的用户总数是5000个,那么这个数量,就是系统用户数。

    同时在线用户数:在一定的时间范围内,最大的同时在线用户数量。

    同时在线用户数=每秒请求数RPS(吞吐量)+并发连接数+平均用户思考时间

    平均并发用户数的计算:C=nL / T

    其中C是平均的并发用户数,n是平均每天访问用户数(login session),L是一天内用户从登录到退出的平均时间(login session的平均时间),T是考察时间长度(一天内多长时间有用户使用系统)

    并发用户数峰值计算:C^约等于C + 3*根号C

    其中C^是并发用户峰值,C是平均并发用户数,该公式遵循泊松分布理论。

    3、吞吐量的计算公式

    指单位时间内系统处理用户的请求数

    从业务角度看,吞吐量可以用:请求数/秒、页面数/秒、人数/天或处理业务数/小时等单位来衡量

    从网络角度看,吞吐量可以用:字节/秒来衡量

    对于交互式应用来说,吞吐量指标反映的是服务器承受的压力,他能够说明系统的负载能力

    以不同方式表达的吞吐量可以说明不同层次的问题,例如,以字节数/秒方式可以表示数要受网络基础设施、服务器架构、应用服务器制约等方面的瓶颈;已请求数/秒的方式表示主要是受应用服务器和应用代码的制约体现出的瓶颈。

    当没有遇到性能瓶颈的时候,吞吐量与虚拟用户数之间存在一定的联系,可以采用以下公式计算:F=VU * R /

    其中F为吞吐量,VU表示虚拟用户个数,R表示每个虚拟用户发出的请求数,T表示性能测试所用的时间

    4、性能计数器

    是描述服务器或操作系统性能的一些数据指标,如使用内存数、进程时间,在性能测试中发挥着“监控和分析”的作用,尤其是在分析统统可扩展性、进行新能瓶颈定位时有着非常关键的作用。

    资源利用率:指系统各种资源的使用情况,如cpu占用率为68%,内存占用率为55%,一般使用“资源实际使用/总的资源可用量”形成资源利用率。

    5、思考时间的计算公式

    Think Time,从业务角度来看,这个时间指用户进行操作时每个请求之间的时间间隔,而在做新能测试时,为了模拟这样的时间间隔,引入了思考时间这个概念,来更加真实的模拟用户的操作。

    在吞吐量这个公式中F=VU * R / T说明吞吐量F是VU数量、每个用户发出的请求数R和时间T的函数,而其中的R又可以用时间T和用户思考时间TS来计算:R = T / TS

    下面给出一个计算思考时间的一般步骤:

    A、首先计算出系统的并发用户数

    C=nL / T F=R×C

    B、统计出系统平均的吞吐量

    F=VU * R / T R×C = VU * R / T

    C、统计出平均每个用户发出的请求数量

    R=u*C*T/VU

    D、根据公式计算出思考时间

    TS=T/R


    三、系统吞度量要素

    一个系统的吞度量(承压能力)与request对CPU的消耗、外部接口、IO等等紧密关联。单个reqeust 对CPU消耗越高,外部系统接口、IO影响速度越慢,系统吞吐能力越低,反之越高。

    系统吞吐量几个重要参数:QPS(TPS)、并发数、响应时间

    QPS(TPS):每秒钟request/事务 数量

    并发数: 系统同时处理的request/事务数

    响应时间: 一般取平均响应时间

    (很多人经常会把并发数和TPS理解混淆)

    再次说明:

    QPS:Queries Per Second意思是“每秒查询率”,是一台服务器每秒能够相应的查询次数,是对一个特定的查询服务器在规定时间内所处理流量多少的衡量标准。

    TPS是TransactionsPerSecond的缩写,也就是事务数/秒。它是软件测试结果的测量单位。一个事务是指一个客户机向服务器发送请求然后服务器做出反应的过程。客户机在发送请求时开始计时,收到服务器响应后结束计时,以此来计算使用的时间和完成的事务个数,最终利用这些信息来估计得分。客户机使用加权协函数平均方法来计算客户机的得分,测试软件就是利用客户机的这些信息使用加权协函数平均方法来计算服务器端的整体TPS得分。

    理解了上面三个要素的意义之后,就能推算出它们之间的关系:

    QPS(TPS)= 并发数/平均响应时间 或者 并发数 = QPS*平均响应时间


    四、系统吞吐量评估

    我们在做系统设计的时候就需要考虑CPU运算、IO、外部系统响应因素造成的影响以及对系统性能的初步预估。

    而通常境况下,我们面对需求,我们评估出来的出来QPS、并发数之外,还有另外一个维度:日PV。

    通过观察系统的访问日志发现,在用户量很大的情况下,各个时间周期内的同一时间段的访问流量几乎一样。比如工作日的每天早上。只要能拿到日流量图和QPS我们就可以推算日流量。

    通常的技术方法:

    1. 找出系统的最高TPS和日PV,这两个要素有相对比较稳定的关系(除了放假、季节性因素影响之外)

    2. 通过压力测试或者经验预估,得出最高TPS,然后跟进1的关系,计算出系统最高的日吞吐量。


        吾之爱,心之念。
               携子手,到白头。

  • 相关阅读:
    springboot—spring aop 实现系统操作日志记录存储到数据库
    排名前16的Java工具类
    SpringBoot集成JWT实现token验证
    使用jQuery实现图片懒加载原理
    Spring主从数据库的配置和动态数据源切换原理
    使用Nginx过滤网络爬虫
    Java io.netty.util.ReferenceCountUtil 代码实例
    Netty系列之Netty百万级推送服务设计要点
    Java给图片和PDF文件添加水印(图片水印和文字水印)
    【TortoiseSVN】windows中连接SVN服务器的工具
  • 原文地址:https://www.cnblogs.com/JC-0527/p/9808680.html
Copyright © 2020-2023  润新知