Time Limit: 20000MS | Memory Limit: 65536K | |
Total Submissions: 56956 | Accepted: 19644 | |
Case Time Limit: 2000MS |
Description
You are working for Macrohard company in data structures department. After failing your previous task about key insertion you were asked to write a new data structure that would be able to return quickly k-th order statistics in the array segment.
That is, given an array a[1...n] of different integer numbers, your program must answer a series of questions Q(i, j, k) in the form: "What would be the k-th number in a[i...j] segment, if this segment was sorted?"
For example, consider the array a = (1, 5, 2, 6, 3, 7, 4). Let the question be Q(2, 5, 3). The segment a[2...5] is (5, 2, 6, 3). If we sort this segment, we get (2, 3, 5, 6), the third number is 5, and therefore the answer to the question is 5.
That is, given an array a[1...n] of different integer numbers, your program must answer a series of questions Q(i, j, k) in the form: "What would be the k-th number in a[i...j] segment, if this segment was sorted?"
For example, consider the array a = (1, 5, 2, 6, 3, 7, 4). Let the question be Q(2, 5, 3). The segment a[2...5] is (5, 2, 6, 3). If we sort this segment, we get (2, 3, 5, 6), the third number is 5, and therefore the answer to the question is 5.
Input
The
first line of the input file contains n --- the size of the array, and m
--- the number of questions to answer (1 <= n <= 100 000, 1 <=
m <= 5 000).
The second line contains n different integer numbers not exceeding 109 by their absolute values --- the array for which the answers should be given.
The following m lines contain question descriptions, each description consists of three numbers: i, j, and k (1 <= i <= j <= n, 1 <= k <= j - i + 1) and represents the question Q(i, j, k).
The second line contains n different integer numbers not exceeding 109 by their absolute values --- the array for which the answers should be given.
The following m lines contain question descriptions, each description consists of three numbers: i, j, and k (1 <= i <= j <= n, 1 <= k <= j - i + 1) and represents the question Q(i, j, k).
Output
For each question output the answer to it --- the k-th number in sorted a[i...j] segment.
Sample Input
7 3 1 5 2 6 3 7 4 2 5 3 4 4 1 1 7 3
Sample Output
5 6 3
Hint
This problem has huge input,so please use c-style input(scanf,printf),or you may got time limit exceed.
Source
Northeastern Europe 2004, Northern Subregion
【中文题意】
给出一个长度为n的序列a1~an,有m次询问(x,y,k),每次询问a[x]~a[y]内的第k小数。
输入第一行为n,m,第二行为a1~an,接下来m行是m个(x,y,k)。
由于数据较大,请使用C风格的输入输出。
1<=n<=100000,1<=m<=5000
思路
主席树+权值线段树
代码实现
1 #include<cstdio> 2 #include<algorithm> 3 using namespace std; 4 const int maxn=1e5+10; 5 int n,k,sz,ts; 6 int a,b,c; 7 int s[maxn],hs[maxn],tt[maxn]; 8 struct tree{int s,l,r,mid,lp,rp;}t[maxn<<5]; 9 void build(int l,int r,int k){ 10 t[k].l=l,t[k].r=r; 11 if(l==r) return; 12 t[k].mid=l+r>>1,t[k].lp=++ts,t[k].rp=++ts; 13 build(l,t[k].mid,t[k].lp); 14 build(t[k].mid+1,r,t[k].rp); 15 } 16 void put(int l,int r,int k,int nk,int p){ 17 t[nk]=(tree){t[k].s+1,t[k].l,t[k].r,t[k].mid}; 18 if(l==r) return; 19 if(p<=t[nk].mid){ 20 t[nk].lp=++ts,t[nk].rp=t[k].rp; 21 put(l,t[nk].mid,t[k].lp,t[nk].lp,p); 22 } 23 else{ 24 t[nk].rp=++ts,t[nk].lp=t[k].lp; 25 put(t[nk].mid+1,r,t[k].rp,t[nk].rp,p); 26 } 27 } 28 int search(int l,int r,int k,int nk,int v){ 29 if(l==r) return l; 30 int w=t[t[nk].lp].s-t[t[k].lp].s; 31 if(v<=w) return search(l,t[k].mid,t[k].lp,t[nk].lp,v); 32 else return search(t[k].mid+1,r,t[k].rp,t[nk].rp,v-w); 33 } 34 int main(){ 35 freopen("kthnumber.in","r",stdin); 36 freopen("kthnumber.out","w",stdout); 37 scanf("%d%d",&n,&k); 38 for(int i=1;i<=n;i++){ 39 scanf("%d",&s[i]); 40 hs[i]=s[i]; 41 } 42 sort(hs+1,hs+n+1); 43 sz=unique(hs+1,hs+n+1)-hs-1; 44 build(1,sz,tt[0]); 45 for(int i=1;i<=n;i++){ 46 int pos=lower_bound(hs+1,hs+sz+1,s[i])-hs; 47 tt[i]=++ts; 48 put(1,sz,tt[i-1],tt[i],pos); 49 50 } 51 for(int i=1;i<=k;i++){ 52 scanf("%d%d%d",&a,&b,&c); 53 printf("%d ",hs[search(1,n,tt[a-1],tt[b],c)]); 54 } 55 return 0; 56 }
仍然不太会,这并不是板子(这份代码应该有坑)。//虽然能AT.
2104 | Accepted | 47820K | 1922MS | G++ | 1412B | 2017-06-07 19:59:16 |
划分树
我听说划分树是把快速排序的流程存储在线段树上;
代码实现
1 #include<cstdio> 2 #include<algorithm> 3 using namespace std; 4 const int maxn=1e5+10; 5 int n,q,a,b,c; 6 int s[maxn],str[20][maxn],cnt[20][maxn]; 7 //s记录排序后的,str记录每一层的排序结果 ,cnt[i][j]表示第i层前j个数中有多少个数进入左子树; 8 int lt[maxn<<2],rt[maxn<<2],md[maxn<<2]; 9 void build(int k,int l,int r,int dp){ 10 lt[k]=l,rt[k]=r,md[k]=l+r>>1; 11 if(l==r) return; 12 int mid=md[k],v=s[mid],lmid=mid-l+1,L=l,R=mid+1; 13 for(int i=l;i<=r;i++) if(str[dp][i]<v) lmid--;//lmid表示左子树中还需要多少个中值; 14 for(int i=l;i<=r;i++){ 15 if(i==l) cnt[dp][i]=0; 16 else cnt[dp][i]=cnt[dp][i-1]; 17 if(str[dp][i]<v||(str[dp][i]==v&&lmid>0)){//构建下一层的左子树; 18 str[dp+1][L++]=str[dp][i],cnt[dp][i]++; 19 if(str[dp][i]==v) lmid--; 20 } 21 else str[dp+1][R++]=str[dp][i]; 22 } 23 build(k<<1,l,mid,dp+1); 24 build(k<<1|1,mid+1,r,dp+1); 25 } 26 int query(int k,int l,int r,int v,int dp){ 27 if(l==r) return str[dp][l]; 28 int s1,s2; 29 if(lt[k]==l) s1=0;//s1为(lt[k],l-1)中分到左子树的个数; 30 else s1=cnt[dp][l-1]; 31 s2=cnt[dp][r]-s1;//s2为(l,r)中分到左子树的个数; 32 if(v<=s2) return query(k<<1,lt[k]+s1,lt[k]+s1+s2-1,v,dp+1); 33 //左子树的数量大于k,递归左子树; 34 int b1=l-lt[k]-s1;//b1为(lt[k],l-1)中分到右子树的个数; 35 int b2=r-l-s2+1;//b2为(l,r)中分到右子树的个数; 36 return query(k<<1|1,md[k]+b1+1,md[k]+b1+b2,v-s2,dp+1); 37 } 38 int main(){ 39 scanf("%d%d",&n,&q); 40 for(int i=1;i<=n;i++){ 41 scanf("%d",&str[1][i]); 42 s[i]=str[1][i]; 43 } 44 sort(s+1,s+n+1); 45 build(1,1,n,1); 46 while(q--){ 47 scanf("%d%d%d",&a,&b,&c); 48 printf("%d ",query(1,a,b,c,1)); 49 } 50 return 0; 51 }
2104 | Accepted | 17572K | 1313MS | G++ | 1396B | 2017-06-07 21:25:11 |
归并树
我听说归并树就是把归并排序的流程存储在树上;
1 #include<cstdio> 2 #include<vector> 3 #include<algorithm> 4 using namespace std; 5 const int maxn=3e5+10; 6 vector<int>t[maxn<<2]; 7 int n,q,a,b,c; 8 void build(int k,int l,int r){ 9 if(l==r){ 10 scanf("%d",&a); 11 t[k].clear(); 12 t[k].push_back(a); 13 return; 14 } 15 int mid=l+r>>1,ls=k<<1,rs=ls|1; 16 build(ls,l,mid); 17 build(rs,mid+1,r); 18 t[k].resize(r-l+1);//调整容器t[]的大小为r-l+1; 19 merge(t[ls].begin(),t[ls].end(),t[rs].begin(),t[rs].end(),t[k].begin());//将两个儿子的数列合并; 20 } 21 int query(int k,int l,int r,int al,int ar,int v){ 22 if(al==l&&ar==r) return upper_bound(t[k].begin(),t[k].end(),v)-t[k].begin(); 23 int mid=l+r>>1,ls=k<<1,rs=ls|1; 24 if(ar<=mid) return query(ls,l,mid,al,ar,v); 25 if(al>mid) return query(rs,mid+1,r,al,ar,v); 26 return query(ls,l,mid,al,mid,v)+query(rs,mid+1,r,mid+1,ar,v); 27 } 28 int main(){ 29 scanf("%d%d",&n,&q); 30 build(1,1,n); 31 while(q--){ 32 scanf("%d%d%d",&a,&b,&c); 33 int l=-1,r=n-1,mid; 34 while(r-l>1){ 35 mid=l+r>>1; 36 if(query(1,1,n,a,b,t[1][mid])>=c) r=mid; 37 else l=mid; 38 } 39 printf("%d ",t[1][r]); 40 } 41 return 0; 42 }
2104 | Accepted | 26840K | 6266MS | G++ | 1012B | 2017-06-08 09:35:11 |
分块+二分
1 #include<cmath> 2 #include<cstdio> 3 #include<cstring> 4 #include<algorithm> 5 using namespace std; 6 const int maxm=3e3+10; 7 const int maxn=3e5+10; 8 int n,q,a,b,c; 9 int bks,bs; 10 int s[maxn],ss[maxn]; 11 int bk[maxm][maxm],len[maxm],bkl[maxm],bkr[maxm]; 12 void build(int n){ 13 bs=n/((int)(sqrt(n*log2(n)))+1); 14 if(n%bs) bks=n/bs+1; 15 else bks=n/bs; 16 for(int i=1;i<=n;i++){ 17 if(i%bks==1) bkl[i/bks+1]=i; 18 if(i%bks) bk[i/bks+1][++len[i/bks+1]]=s[i]; 19 if(i%bks==0) bkr[i/bks]=i,bk[i/bks][++len[i/bks]]=s[i]; 20 } 21 bkr[bs]=n; 22 for(int i=1;i<=bs;i++) sort(bk[i]+1,bk[i]+len[i]+1); 23 } 24 int find(int i,int v){ 25 int l,r,ans; 26 l=ans=0,r=len[i]+1; 27 while(r-l>0){ 28 int mid=l+r>>1; 29 if(bk[i][mid]<=v) ans=mid,l=mid+1; 30 else r=mid; 31 } 32 return ans; 33 } 34 bool check(int l,int r,int k,int v){ 35 int ans=0; 36 for(int i=1;i<=bs;i++){ 37 if(bkl[i]>=l&&bkr[i]<=r) ans+=find(i,v); 38 else if(bkl[i]<=l&&bkr[i]>=r) for(int j=l;j<=r;j++){if(s[j]<=v) ans++;} 39 else if(bkl[i]<=l&&bkr[i]>=l) for(int j=l;j<=bkr[i];j++){if(s[j]<=v) ans++;} 40 else if(bkl[i]<=r&&bkr[i]>=r) for(int j=bkl[i];j<=r;j++){if(s[j]<=v) ans++;} 41 } 42 return ans<k; 43 } 44 int div(int L,int R,int k){ 45 int l,r; 46 l=0,r=n; 47 while(r-l>1){ 48 int mid=l+r>>1; 49 if(check(L,R,k,ss[mid])) l=mid; 50 else r=mid; 51 } 52 return ss[r]; 53 } 54 int main(){ 55 scanf("%d%d",&n,&q); 56 for(int i=1;i<=n;i++){ 57 scanf("%d",&s[i]); 58 ss[i]=s[i]; 59 } 60 sort(ss+1,ss+n+1); 61 build(n); 62 while(q--){ 63 scanf("%d%d%d",&a,&b,&c); 64 printf("%d ",div(a,b,c)); 65 } 66 return 0; 67 }
2104 | Accepted | 1868K | 8985MS | G++ | 1571B | 2017-06-08 08:26:44 |
个人偏好主席树。//只会写主席树。。。
显然划分树最快而且其空间也是最小的(如果归并树的STL减益不是太大);
主席树次之,但是空间使用量最大;
归并树用了大量的空间换取时间;
分块看起来最暴力,时间上也确实如此;