• 联考20200722 T2 ACT4!无限回转!


    分析:
    倒过来思考,我们求某条直线的概率时,选择一个角度确定,那么选到做贡献的点的概率为下图着色面积与总面积之比:

    着色面积可以先求半平面覆盖面积然后作差
    半平面覆盖面积极角排序二分找到相交线段计算
    然而角度也是不确定的,但是我们发现以角度为自变量,得到的概率函数是连续的
    其实可以看做一个概率密度函数,我们可以求积分得到具体概率
    函数貌似不平滑,但是求的是近似值,我们使用辛普森积分就可以解决
    复杂度\(O(n^2+n\sigmalogn)\)
    其中\(\sigma\)为一次辛普森积分的复杂度

    #include<cstdio>
    #include<cmath>
    #include<cstring>
    #include<iostream>
    #include<algorithm>
    #include<queue>
    #include<set>
    #include<map>
    #include<vector>
    #include<string>
    
    #define maxn 100005
    #define INF 0x3f3f3f3f
    #define MOD 998244353
    #define eps 1e-10
    
    using namespace std;
    
    inline long long getint()
    {
    	long long num=0,flag=1;char c;
    	while((c=getchar())<'0'||c>'9')if(c=='-')flag=-1;
    	while(c>='0'&&c<='9')num=num*10+c-48,c=getchar();
    	return num*flag;
    }
    
    const double pi=acos(-1);
    int n;
    double simpeps;
    double ang[maxn],sum[maxn];
    struct pt{
    	double x,y;
    	pt(){}pt(double _x,double _y){x=_x,y=_y;}
    	friend pt operator +(pt x,pt y){return pt(x.x+y.x,x.y+y.y);}
    	friend pt operator -(pt x,pt y){return pt(x.x-y.x,x.y-y.y);}
    }p[maxn];
    inline double atan2(pt a){return atan2(a.y,a.x);}
    struct line{pt a,b;};
    
    inline double Cross(pt x,pt y)
    {return x.x*y.y-x.y*y.x;}
    inline pt inter(line a,line b)
    {
    	double s1=Cross(b.a-a.a,b.b-a.a),s2=Cross(b.b-a.b,b.a-a.b);
    	return pt(a.a.x+(a.b.x-a.a.x)/(s1+s2)*s1,a.a.y+(a.b.y-a.a.y)/(s1+s2)*s1);
    }
    inline double calc(double x)
    {
    	int q=upper_bound(ang+1,ang+n+1,x)-ang-1;
    	double ans=sum[q];
    	if(q>=n||fabs(x-ang[n])<eps)return ans;
    	if(q==1||fabs(x-ang[2])<eps)return 0;
    	line l=(line){p[1],p[1]+pt(cos(x),sin(x))};
    	pt P=inter((line){p[q],p[q%n+1]},l);
    	ans+=Cross(P-p[1],p[q]-p[1]);
    	return ans;
    }
    
    inline double calc(double dx,double y1,double y2,double y3)
    {return (y1+4*y2+y3)*dx/6;}
    inline double simp(double l,double r,double mid,double yl,double yr,double ymid,double c)
    {
    	double lm=(l+mid)/2,ylm=calc(lm);
    	double rm=(r+mid)/2,yrm=calc(rm);
    	double c1=calc(mid-l,yl,ylm,ymid),c2=calc(r-mid,ymid,yrm,yr);
    	if(abs(c1+c2-c)<simpeps)return c1+c2;
    	return simp(l,mid,lm,yl,ymid,ylm,c1)+simp(mid,r,rm,ymid,yr,yrm,c2);
    }
    inline double getp(double l,double r)
    {return simp(l,r,(l+r)/2,calc(l),calc(r),calc((l+r)/2),calc(r-l,calc(l),calc(r),calc((l+r)/2)));}
    
    int main()
    {
    	n=getint();
    	for(int i=1;i<=n;i++)p[i].x=getint(),p[i].y=getint();
    	double S=0;
    	for(int i=1;i<=n;i++)S+=Cross(p[i],p[i%n+1]);
    	simpeps=eps*S;
    	for(int t=1;t<=n;t++)
    	{
    		for(int i=2;i<=n;i++)
    		{
    			ang[i]=atan2(p[i]-p[1]);
    			if(i>2)
    			{
    				while(ang[i]<ang[2])ang[i]+=pi*2;
    				while(ang[i]>ang[2]+pi)ang[i]-=pi*2;
    			}
    			sum[i]=sum[i-1]+Cross(p[i]-p[1],p[i-1]-p[1]);
    		}
    		sum[n+1]=sum[n],ang[1]=-2*pi;
    		double simp1=getp(ang[2],ang[2]+pi);p[n+1]=p[1];
    		for(int i=1;i<=n;i++)p[i]=p[i+1];
    		ang[n]=atan2(p[n]-p[1]);
    		for(int i=2;i<n;i++)
    		{
    			ang[i]=atan2(p[i]-p[1]);
    			while(ang[i]<ang[n])ang[i]+=pi*2;
    			while(ang[i]>ang[n]+pi)ang[i]-=pi*2;
    			sum[i]=sum[i-1]+Cross(p[i]-p[1],p[i-1]-p[1]);
    		}
    		sum[n+1]=sum[n],ang[1]=-2*pi;
    		double simp2=getp(ang[n]-pi,ang[n]);
    		printf("%.10lf\n",(simp2-simp1)/(S*pi*2));
    	}
    }
    

  • 相关阅读:
    2015上阅读计划
    《梦断代码》读书笔记 第2篇
    四则运算3
    求数组中最大子数组的和(一维)
    四则运算2—单元测试
    四则运算2
    《梦断代码》读书笔记 第1篇
    四组运算2(思路)
    四则运算1
    读书笔记
  • 原文地址:https://www.cnblogs.com/IzayoiDoyo/p/13362657.html
Copyright © 2020-2023  润新知