做莫比乌斯反演题显著提高了我的(LaTeX)水平
推式子(默认(N leq M),分数下取整,会省略大部分过程)
(egin{align*} prodlimits_{i=1}^N prodlimits_{j=1}^M f[gcd(i,j)] & = prodlimits_{d=1}^N f[d]^{sumlimits_{i=1}^frac{N}{d} sumlimits_{j=1}^frac{M}{d}[gcd(i,j)==1]} \ & = prodlimits_{d = 1}^N f[d]^{sumlimits_{p=1}^frac{N}{d} mu(p) frac{N}{dp} frac{M}{dp}} end{align*})
推到这里可以(O(TN))地通过两个数论分块得出答案,可以获得70pts
当然这还不够,按照老套路枚举(dp)继续推式子
(egin{align*} prodlimits_{d = 1}^N f[d]^{sumlimits_{p=1}^frac{N}{d} mu(p) frac{N}{dp} frac{M}{dp}} & = prodlimits_{T=1} ^ N prodlimits_{d | T} f[d] ^ {mu (frac{T}{d}) frac{N}{T} frac{M}{T}} \ & = prodlimits_{T=1} ^ N prodlimits_{d | T} (f[d] ^ {mu (frac{T}{d})} ) ^ { frac{N}{T} frac{M}{T}} end{align*})
(frac{N}{T} frac{M}{T})可以数论分块,所以要求(f[d]^{mu(frac{T}{d})})的前缀积
当你以为要线性筛的时候……(N leq 10^6)直接枚举倍数乘进去就行了……
总复杂度(O(NlogN + Tsqrt{N}))
#include<bits/stdc++.h>
//This code is written by Itst
using namespace std;
inline int read(){
int a = 0;
char c = getchar();
bool f = 0;
while(!isdigit(c)){
if(c == '-')
f = 1;
c = getchar();
}
while(isdigit(c)){
a = (a << 3) + (a << 1) + (c ^ '0');
c = getchar();
}
return f ? -a : a;
}
const int MOD = 1e9 + 7 , MAXN = 1e6 + 7;
bool nprime[MAXN];
int fib[MAXN] , inv[MAXN] , mu[MAXN] , times[MAXN] , prime[MAXN];
int N , M , cnt;
inline int poww(long long a , int b){
int times = 1;
while(b){
if(b & 1)
times = times * a % MOD;
a = a * a % MOD;
b >>= 1;
}
return times;
}
void init(){
fib[1] = inv[1] = times[1] = times[0] = mu[1] = 1;
for(int i = 2 ; i <= N ; ++i){
times[i] = 1;
fib[i] = (fib[i - 1] + fib[i - 2]) % MOD;
inv[i] = poww(fib[i] , MOD - 2);
}
for(int i = 2 ; i <= N ; ++i){
if(!nprime[i]){
prime[++cnt] = i;
mu[i] = -1;
}
for(int j = 1 ; j <= cnt && i * prime[j] <= N ; ++j){
nprime[i * prime[j]] = 1;
if(i % prime[j] == 0)
break;
mu[i * prime[j]] = -1 * mu[i];
}
}
for(int i = 1 ; i <= N ; ++i)
for(int j = 1 ; j * i <= N ; ++j)
if(mu[j])
times[j * i] = 1ll * times[j * i] * (mu[j] > 0 ? fib[i] : inv[i]) % MOD;
for(int i = 2 ; i <= N ; ++i)
times[i] = 1ll * times[i - 1] * times[i] % MOD;
for(int i = 0 ; i <= N ; ++i)
inv[i] = poww(times[i] , MOD - 2);
}
int main(){
N = 1e6;
init();
for(int T = read() ; T ; --T){
N = read();
M = read();
if(N > M)
swap(N , M);
int ans = 1;
for(int i = 1 , pi ; i <= N ; i = pi + 1){
pi = min(N / (N / i) , M / (M / i));
ans = 1ll * ans * poww(1ll * times[pi] * inv[i - 1] % MOD , 1ll * (N / i) * (M / i) % (MOD - 1)) % MOD;
}
printf("%d
" , ans);
}
return 0;
}