点分树搞出来,然后搞个快点的平衡树。
点分树膨胀的时候就搞重构,没了。。。说的这么轻巧倒是写了3h 23333
// powered by c++11
// by Isaunoya
#include <bits/stdc++.h>
#define rep(i, x, y) for (register int i = (x); i <= (y); ++i)
#define Rep(i, x, y) for (register int i = (x); i >= (y); --i)
#define pb emplace_back
using namespace std;
using ll = long long;
const int io_size = 1 << 23 | 233;
const int io_limit = 1 << 22;
struct io_in {
char ch;
#ifndef __WIN64
char getchar() {
static char buf[io_size], *p1 = buf, *p2 = buf;
return (p1 == p2) && (p2 = (p1 = buf) + fread(buf, 1, io_size, stdin), p1 == p2) ? EOF : *p1++;
}
#endif
template <class T>
void read(T& x) {
bool f = 0;
while ((ch = getchar()) < 48 && ~ch) f ^= (ch == 45);
x = ~ch ? (ch ^ 48) : 0;
while ((ch = getchar()) > 47) x = x * 10 + (ch ^ 48);
x = f ? -x : x;
}
io_in& operator>>(int& x) { return read(x), *this; }
io_in& operator>>(ll& x) { return read(x), *this; }
} in;
struct io_out {
char buf[io_size], *s = buf;
int st[233];
~io_out() { flush(); }
void io_chk() {
if (s - buf > io_limit) flush();
}
void flush() { fwrite(buf, 1, s - buf, stdout), fflush(stdout), s = buf; }
io_out& operator<<(char c) { return *s++ = c, *this; }
template <class T>
void write(T x) {
if (x < 0) *s++ = '-', x = -x;
do {
st[++st[0]] = x % 10, x /= 10;
} while (x);
while (st[0]) *s++ = st[st[0]--] ^ 48;
}
io_out& operator<<(int x) { return write(x), io_chk(), *this; }
io_out& operator<<(ll x) { return write(x), io_chk(), *this; }
} out;
void cmax(int& x, const int& y) {
if (x < y) x = y;
}
int n;
const int maxn = 1e5 + 51;
const double alpha = 0.8;
const int mod = 1e9;
vector<int> g[maxn];
int fa[maxn], val[maxn];
struct Edge {
int v, nxt;
} e[maxn << 1];
int head[maxn], cnt = 0;
void add_edge(int u, int v) {
e[++cnt] = { v, head[u] }, head[u] = cnt;
e[++cnt] = { u, head[v] }, head[v] = cnt;
}
int f[maxn][19], dep[maxn], len[maxn];
int lca(int x, int y) {
if (dep[x] < dep[y]) x ^= y ^= x ^= y;
for (int i = 17; ~i; i--)
if (dep[f[x][i]] >= dep[y]) x = f[x][i];
if (x == y) return x;
for (int i = 17; ~i; i--)
if (f[x][i] ^ f[y][i]) x = f[x][i], y = f[y][i];
return f[x][0];
}
int dis(int x, int y) { return len[x] + len[y] - 2 * len[lca(x, y)]; }
struct ScapeGoatTree {
struct Goat {
int val, sz;
Goat* ch[2];
Goat() {}
bool bad() { return ch[0]->sz >= sz * alpha + 5 || ch[1]->sz >= sz * alpha + 5; }
} * tr1[maxn], *tr2[maxn], *pool[maxn << 8], *null, *sta[maxn], mem[maxn << 8];
int tot, top;
void init() {
null = new Goat(), null->ch[0] = null->ch[1] = null, null->sz = null->val = 0;
for (int i = 0; i < (maxn << 8); i++) pool[i] = mem + i;
tot = (maxn << 8) - 1;
for (int i = 0; i < maxn; i++) tr1[i] = tr2[i] = null;
}
Goat** insert(Goat*& p, int val) {
if (p == null) {
p = pool[tot--], p->ch[0] = p->ch[1] = null;
p->val = val, p->sz = 1;
return &null;
}
p->sz++;
Goat** o = insert(p->ch[p->val < val], val);
if (p->bad()) o = &p;
return o;
}
int getrk(Goat* p, int val) {
if (p == null) return 0;
return (p->val >= val) ? getrk(p->ch[0], val) : (getrk(p->ch[1], val) + p->ch[0]->sz + 1);
}
void clr(Goat* p) {
if (p == null) return;
if (p->ch[0] != null) clr(p->ch[0]);
pool[++tot] = p;
if (p->ch[1] != null) clr(p->ch[1]);
}
void travel(Goat* p) {
if (p == null) return;
if (p->ch[0] != null) travel(p->ch[0]);
sta[++top] = p;
if (p->ch[1] != null) travel(p->ch[1]);
}
Goat* build(int l, int r) {
if (l > r) return null;
int mid = l + r >> 1;
Goat* p = sta[mid];
p->sz = r - l + 1;
p->ch[0] = build(l, mid - 1);
p->ch[1] = build(mid + 1, r);
return p;
}
void rebuild(Goat*& p) { top = 0, travel(p), p = build(1, top); }
void Insert(Goat*& p, int val) {
Goat** o = insert(p, val);
if (*o != null) rebuild(*o);
}
} sgt;
int sz[maxn], mx[maxn], vis[maxn], siz, rt;
void findrt(int u, int fa) {
sz[u] = 1, mx[u] = 0;
for (int i = head[u]; i; i = e[i].nxt) {
int v = e[i].v;
if (v ^ fa && !vis[v]) {
findrt(v, u), sz[u] += sz[v], cmax(mx[u], sz[v]);
}
}
cmax(mx[u], siz - sz[u]);
if (mx[u] < mx[rt]) rt = u;
}
void dfs(int u, int f, int rt) {
sgt.Insert(sgt.tr1[rt], dis(u, rt) - val[u]);
if (fa[rt]) sgt.Insert(sgt.tr2[rt], dis(u, fa[rt]) - val[u]);
for (int i = head[u]; i; i = e[i].nxt) {
int v = e[i].v;
if (v ^ f && !vis[v]) dfs(v, u, rt);
}
}
void solve(int u, int f) {
int totsz = siz;
fa[u] = f, vis[u] = 1, dfs(u, 0, u);
for (int i = head[u]; i; i = e[i].nxt) {
int v = e[i].v;
if (!vis[v]) {
rt = 0, siz = sz[v] > sz[u] ? totsz - sz[u] : sz[v];
findrt(v, 0), g[u].pb(rt), solve(rt, u);
}
}
}
void recover(int x) {
++siz, vis[x] = 0, sgt.clr(sgt.tr1[x]), sgt.clr(sgt.tr2[x]);
sgt.tr1[x] = sgt.tr2[x] = sgt.null;
for (int v : g[x]) recover(v);
g[x].clear();
}
void rebuild(int x) {
siz = 0, recover(x), rt = 0, findrt(x, 0);
if (fa[x])
for (int i = 0, lim = g[fa[x]].size(); i < lim; i++)
if (g[fa[x]][i] == x) g[fa[x]][i] = rt;
solve(rt, fa[x]);
}
ll ans = 0;
int insert(int x) {
for (int i = x; fa[i]; i = fa[i]) {
int ds = val[x] - dis(x, fa[i]) + 1;
ans += sgt.getrk(sgt.tr1[fa[i]], ds) - sgt.getrk(sgt.tr2[i], ds);
}
sgt.Insert(sgt.tr1[x], -val[x]);
for (int i = x; fa[i]; i = fa[i]) {
int ds = dis(fa[i], x) - val[x];
sgt.Insert(sgt.tr1[fa[i]], ds);
sgt.Insert(sgt.tr2[i], ds);
}
int res = 0;
for (int i = x; fa[i]; i = fa[i])
if (sgt.tr1[i]->sz >= sgt.tr1[fa[i]]->sz * alpha + 5) res = fa[i];
return res;
}
signed main() {
// code begin.
int FUCK;
in >> FUCK >> n, mx[rt = 0] = 1e9, sgt.init();
rep(i, 1, n) {
int qwq;
in >> fa[i] >> qwq >> val[i];
f[i][0] = fa[i] ^ (ans % mod), fa[i] = f[i][0];
dep[i] = dep[fa[i]] + 1, len[i] = len[fa[i]] + qwq, vis[i] = 1;
if (fa[i]) g[fa[i]].pb(i), add_edge(f[i][0], i);
for (int j = 1; (1 << j) + 1 <= dep[i]; j++) f[i][j] = f[f[i][j - 1]][j - 1];
int x = insert(i);
if (x) rebuild(x);
out << ans << '
';
}
return 0;
// code end.
}