• [HAOI2012]高速公路


    (A=sum_{i=l}^{r}sum_{j=i}^{r} dis_{i,j}) , (B= C_{r-l+1}^{2})

    期望值为 (frac{A}{B})

    我们发现这是一条链所以用一种常用的套路:边权化点权

    然后发现这个(dis_{i,j}) 其实是 (sum_j - sum_i)
    ((sum_x=sum_{i=1}^{x}a_i))

    考虑 ([L , R]) 区间出现 (a_i) 的个数

    我们可以发现其实是

    [sum_{i=l}^{r} a_i * (r - i + 1) * (i - l + 1) ]

    [= sum_{i=l}^{r}a_i*((r*i-r*l+r)-(i^2-i*l+i)+i-l+1) ]

    [=-sum_{i=l}^{r}a_i*i^2+ (r-l+1-l*r)sum_{i=l}^{r}a_i +(l+r)sum_{i=l}^{r}a_i*i]

    (s1 = sum_{i=l}^{r}a_i,s2=sum_{i=l}^{r}i*a_i,s3=sum_{i=l}^{r}i^2*a_i)

    那么 (ans =(l + r) * s2 + ((r - l) - l * r + 1) * s1 - s3)

    对于区间修改 懒标记以及修改方法

    我们发现对 (s1_{rt}) 的影响是 (sum_{i=l}^{r} val)

    (s2_{rt}) 的影响是 (sum_{i=l}^{r}i*val)

    (s3_{rt}) 的影响是 (sum_{i=l}^{r}i^2*val)

    所以就维护一个静态的 (s4_{rt} = sum_{i=l}^{r}i)
    以及 (s5_{rt} = sum_{i=l}^{r}i^2)

    (( exttt{rt指的是某一段区间…学过线段树的都会(?)}))

    放上人傻常数大的代码

    #include<bits/stdc++.h>
    #define int long long
    using namespace std ;
    inline void read(int & x) {
      register char c = x = 0 ; bool f = 0 ;
      while(! isdigit(c)) { if(c == '-') f = 1 ; c = getchar() ; }
      while(isdigit(c)) { x = (x << 1) + (x << 3) + (c & 15) ; c = getchar() ; }
      if(f) x = -x ;
    }
    int n , m ;
    const int N = 1e5 + 10 ;
    int s1[N << 2] , s2[N << 2] , s3[N << 2] , s4[N << 2] , s5[N << 2] , tag[N << 2] ;
    inline void pushup(int rt) { s1[rt] = s1[rt << 1] + s1[rt << 1 | 1] ;
      s2[rt] = s2[rt << 1] + s2[rt << 1 | 1] ; s3[rt] = s3[rt << 1] + s3[rt << 1 | 1] ;
    }
    inline void build(int l , int r , int rt) {
      if(l == r) { s4[rt] = l ; s5[rt] = l * l ; return ; }
      int mid = l + r >> 1 ; build(l , mid , rt << 1) ; build(mid + 1 , r , rt << 1 | 1) ;
      s4[rt] = s4[rt << 1] + s4[rt << 1 | 1] ; s5[rt] = s5[rt << 1] + s5[rt << 1 | 1] ;
    }
    inline void pushdown(int rt , int l , int r) {
      if(! tag[rt]) return ; int mid = l + r >> 1 ;
      tag[rt << 1] += tag[rt] ; tag[rt << 1 | 1] += tag[rt] ;
      s1[rt << 1] += tag[rt] * (mid - l + 1) ; s1[rt << 1 | 1] += tag[rt] * (r - mid) ;
      s2[rt << 1] += s4[rt << 1] * tag[rt] ; s2[rt << 1 | 1] += s4[rt << 1 | 1] * tag[rt] ;
      s3[rt << 1] += s5[rt << 1] * tag[rt] ; s3[rt << 1 | 1] += s5[rt << 1 | 1] * tag[rt] ;
      tag[rt] = 0 ;
    }
    inline void upd(int a , int b , int l , int r , int rt , int val) {
      if(a <= l && r <= b) {
        s1[rt] += val * (r - l + 1) ; s2[rt] += val * s4[rt] ;
        s3[rt] += val * s5[rt] ; tag[rt] += val ;
        return ;
      } pushdown(rt , l , r) ;
      int mid = l + r >> 1 ;
      if(a <= mid) upd(a , b , l , mid , rt << 1 , val) ;
      if(b > mid) upd(a , b , mid + 1 , r , rt << 1 | 1 , val) ;
      pushup(rt) ;
    }
    inline void query(int a , int b , int l , int r , int rt , int & sum1 , int & sum2 , int & sum3) {
      if(a <= l && r <= b) { sum1 += s1[rt] ; sum2 += s2[rt] ; sum3 += s3[rt] ; return ; }
      pushdown(rt , l , r) ; int mid = l + r >> 1 ;
      if(a <= mid) query(a , b , l , mid , rt << 1 , sum1 , sum2 , sum3) ;
      if(b > mid) query(a , b , mid + 1 , r , rt << 1 | 1 , sum1 , sum2 , sum3) ;
    }
    signed main() {
    #ifdef _WIN64
      freopen("0.in" , "r" , stdin) ;
    #endif
      read(n) ; read(m) ;
      build(1 , n , 1) ;
      while(m --) {
        char c = getchar() ;
        while(isspace(c)) c = getchar() ;
        if(c == 'C') {
          int l , r , val ;
          read(l) ; read(r) ; read(val) ;
          upd(++ l , r , 1 , n , 1 , val) ;
        } else {
          int l , r ; read(l) ; read(r) ;
          int sum1 , sum2 , sum3 ; sum1 = sum2 = sum3 = 0 ;
          query(l + 1 , r , 1 , n , 1 , sum1 , sum2 , sum3) ;
          int ans = (l + r + 1) * sum2 + ((r - l - 1) - (l + 1) * r + 1) * sum1 - sum3 ;
          int down = (r - l + 1) * (r - l) >> 1 ;
          int gcd = __gcd(ans , down) ;
          cout << ans / gcd << '/' << down / gcd << '
    ' ;
        }
      }
      return 0 ;
    }
    
  • 相关阅读:
    spring security5.0源码导入idea
    汇编学习笔记(13)
    汇编学习笔记(12)
    汇编学习笔记(11)
    汇编学习笔记(10)-IO端口与指令
    汇编学习笔记(9)-汇编程序的基本语法(NASM)
    汇编学习笔记(8)-IDA+VMware调试MBR
    汇编学习笔记(7)-NASM环境搭建(nasm with vs2017)
    汇编学习笔记(6)-从MASM至NASM
    汇编学习笔记(4)-伪指令(MASM)
  • 原文地址:https://www.cnblogs.com/Isaunoya/p/11859320.html
Copyright © 2020-2023  润新知