• 【Paper Reading】R-CNN(V5)论文解读


    R-CNN论文:Rich feature hierarchies for accurate object detection and semantic segmentation

    用于精确目标检测和语义分割的丰富特征层次结构
    作者:Ross Girshick, Jeff Donahue, Trevor Darrell, Jitendra Malik,UC Berkeley(加州大学伯克利分校)
    一作者Ross Girshick的个人首页:http://www.rossgirshick.info/,有其许多论文和代码,也包括本文的[代码](https://github.com/rbgirshick/rcnn)、幻灯片(slides)、海报(poster)等。文章的工作量和成果的确让人佩服,幻灯片讲的很详细,海报也炫酷。

    关键词:accurate object detection、semantic segmentation

    引用格式:Girshick, R.,Donahue, J.,Darrell, T.,Malik, J.. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation[P]. Computer Vision and Pattern Recognition (CVPR), 2014 IEEE Conference on,2014.

    前言

    参考[学者]对R-CNN的前言介绍:overfeat是用深度学习的方法做目标检测,但RCNN是第一个可以真正可以工业级应用的解决方案。可以说改变了目标检测领域的主要研究思路,紧随其后的系列文章:Fast-RCNN、Faster-RCNN、Mask RCNN都沿袭R-CNN的思路。在2013年11月发布了第一版本,一直到2014年10月共计发布5个版本,2014年发布在CVPR,CVPR是IEEE Conference on Computer Vision and Pattern Recognition的缩写,即IEEE国际计算机视觉与模式识别会议。该会议是由IEEE举办的计算机视觉和模式识别领域的顶级会议。近年来每年有约1500名参加者,收录的论文数量一般300篇左右。会议每年都会有固定的研讨主题,而每一年都会有公司赞助该会议并获得在会场展示的机会。三大顶级会议有CVPR、ICCV和ECCV。

    引用下图区分计算机视觉的任务:

    计算机视觉任务示例

    classify:识别目标类别
    localization:单个目标,标出目标位置
    detection:多个目标,标出目标位置,识别类别
    segementation:目标分割


    0 Abstract

    Object detection performance, as measured on the canonical PASCAL VOC dataset, has plateaued in the last few years. The best-performing methods are complex ensemble systems that typically combine multiple low-level image features with high-level context. In this paper, we propose a simple and scalable detection algorithm that improves mean average precision (mAP) by more than 30% relative to the previous best result on VOC 2012---achieving a mAP of 53.3%. Our approach combines two key insights: (1) one can apply high-capacity convolutional neural networks (CNNs) to bottom-up region proposals in order to localize and segment objects and (2) when labeled training data is scarce, supervised pre-training for an auxiliary task, followed by domain-specific fine-tuning, yields a significant performance boost. Since we combine region proposals with CNNs, we call our method R-CNN: Regions with CNN features. We also compare R-CNN to OverFeat, a recently proposed sliding-window detector based on a similar CNN architecture. We find that R-CNN outperforms OverFeat by a large margin on the 200-class ILSVRC2013 detection dataset. Source code for the complete system is available at this http URL.

    ## 地方

     $$f=sum_{t=1}^{T}left(f_{mathbf{S}}^{t}+f_{mathbf{L}}^{t} ight)$$

    dfads

    作者:张清博

    -------------------------------------------

    个性签名:半途而废

    本文如有帮助,记得在右下角点个“推荐”哦,在此感谢!

  • 相关阅读:
    HandlerThread
    handler原理
    死锁简析
    Android序列化
    AsyncTask原理
    【java线程池】
    java创建线程的三种方式
    service相关
    【hashMap】详谈
    【activity任务栈】浅析
  • 原文地址:https://www.cnblogs.com/Ireland/p/12333789.html
Copyright © 2020-2023  润新知