• POJ2762 Going from u to v or from v to u?


    原题链接

    显然在一个强连通分量里,任意两个点都可以到达,所以我们先用(tarjan)求强连通分量,并进行缩点。
    对于缩点后的(DAG),必须满足是一条链,即在对该(DAG)进行拓扑排序的过程中,在任何时候都有且只有一个点是入度为(0)
    因为若有两个点或以上的点同时出现入度为(0),那么这几个入度为(0)的点显然不能满足至少有一个点可以另一个点的条件。

    #include<cstdio>
    #include<cstring>
    using namespace std;
    const int N = 1010;
    const int M = 6010;
    struct eg {
    	int x, y;
    };
    eg b[M];
    int fi[N], di[M], ne[M], cfi[N], cdi[M], cne[M], dfn[N], low[N], sta[N], bl[N], ru[N], q[M], l, lc, ti, SCC, tp;
    bool v[N];
    inline int re()
    {
    	int x = 0;
    	char c = getchar();
    	bool p = 0;
    	for (; c < '0' || c > '9'; c = getchar())
    		p |= c == '-';
    	for (; c >= '0' && c <= '9'; c = getchar())
    		x = x * 10 + c - '0';
    	return p ? -x : x;
    }
    inline int minn(int x, int y)
    {
    	return x < y ? x : y;
    }
    inline void add(int x, int y)
    {
    	di[++l] = y;
    	ne[l] = fi[x];
    	fi[x] = l;
    }
    inline void add_c(int x, int y)
    {
    	cdi[++lc] = y;
    	cne[lc] = cfi[x];
    	cfi[x] = lc;
    }
    void tarjan(int x)
    {
    	int i, y;
    	dfn[x] = low[x] = ++ti;
    	sta[++tp] = x;
    	v[x] = 1;
    	for (i = fi[x]; i; i = ne[i])
    		if (!dfn[y = di[i]])
    		{
    			tarjan(y);
    			low[x] = minn(low[x], low[y]);
    		}
    		else
    			if (v[y])
    				low[x] = minn(low[x], dfn[y]);
    	if (!(dfn[x] ^ low[x]))
    	{
    		SCC++;
    		do
    		{
    			y = sta[tp--];
    			bl[y] = SCC;
    			v[y] = 0;
    		} while (x ^ y);
    	}
    }
    bool topsort()
    {
    	int head = 0, tail = 0, i, x, y;
    	for (i = 1; i <= SCC; i++)
    		if (!ru[i])
    			q[++tail] = i;
    	if (tail - head > 1)
    		return true;
    	while (head ^ tail)
    	{
    		x = q[++head];
    		for (i = cfi[x]; i; i = cne[i])
    		{
    			y = cdi[i];
    			ru[y]--;
    			if (!ru[y])
    			{
    				q[++tail] = y;
    				if (tail - head > 1)
    					return true;
    			}
    		}
    	}
    	return false;
    }
    int main()
    {
    	int i, n, m, x, y, t;
    	t = re();
    	while (t--)
    	{
    		n = re();
    		m = re();
    		memset(fi, 0, sizeof(fi));
    		memset(cfi, 0, sizeof(cfi));
    		memset(dfn, 0, sizeof(dfn));
    		memset(low, 0, sizeof(low));
    		memset(bl, 0, sizeof(bl));
    		memset(ru, 0, sizeof(ru));
    		l = lc = SCC = ti = 0;
    		for (i = 1; i <= m; i++)
    		{
    			b[i].x = re();
    			b[i].y = re();
    			add(b[i].x, b[i].y);
    		}
    		for (i = 1; i <= n; i++)
    			if (!dfn[i])
    				tarjan(i);
    		for (i = 1; i <= m; i++)
    		{
    			x = bl[b[i].x];
    			y = bl[b[i].y];
    			if (x ^ y)
    			{
    				add_c(x, y);
    				ru[y]++;
    			}
    		}
    		if (topsort())
    			printf("No
    ");
    		else
    			printf("Yes
    ");
    	}
    	return 0;
    }
    
  • 相关阅读:
    Jenkins的maven工程打包的时候怎么指定不同环境的配置文件
    杂记待整理
    zabbix监控网络的出入口流量
    MySQL的恢复脚本
    mysql 备份恢复图
    切割haproxy的日志
    zabbix 监控MySQL
    svn 的备份还原
    svn做目录访问控制(AuthzSVNAccessFile)
    MySQL多实例
  • 原文地址:https://www.cnblogs.com/Iowa-Battleship/p/9677505.html
Copyright © 2020-2023  润新知