原题链接
显然在一个强连通分量里,任意两个点都可以到达,所以我们先用(tarjan)求强连通分量,并进行缩点。
对于缩点后的(DAG),必须满足是一条链,即在对该(DAG)进行拓扑排序的过程中,在任何时候都有且只有一个点是入度为(0)。
因为若有两个点或以上的点同时出现入度为(0),那么这几个入度为(0)的点显然不能满足至少有一个点可以另一个点的条件。
#include<cstdio>
#include<cstring>
using namespace std;
const int N = 1010;
const int M = 6010;
struct eg {
int x, y;
};
eg b[M];
int fi[N], di[M], ne[M], cfi[N], cdi[M], cne[M], dfn[N], low[N], sta[N], bl[N], ru[N], q[M], l, lc, ti, SCC, tp;
bool v[N];
inline int re()
{
int x = 0;
char c = getchar();
bool p = 0;
for (; c < '0' || c > '9'; c = getchar())
p |= c == '-';
for (; c >= '0' && c <= '9'; c = getchar())
x = x * 10 + c - '0';
return p ? -x : x;
}
inline int minn(int x, int y)
{
return x < y ? x : y;
}
inline void add(int x, int y)
{
di[++l] = y;
ne[l] = fi[x];
fi[x] = l;
}
inline void add_c(int x, int y)
{
cdi[++lc] = y;
cne[lc] = cfi[x];
cfi[x] = lc;
}
void tarjan(int x)
{
int i, y;
dfn[x] = low[x] = ++ti;
sta[++tp] = x;
v[x] = 1;
for (i = fi[x]; i; i = ne[i])
if (!dfn[y = di[i]])
{
tarjan(y);
low[x] = minn(low[x], low[y]);
}
else
if (v[y])
low[x] = minn(low[x], dfn[y]);
if (!(dfn[x] ^ low[x]))
{
SCC++;
do
{
y = sta[tp--];
bl[y] = SCC;
v[y] = 0;
} while (x ^ y);
}
}
bool topsort()
{
int head = 0, tail = 0, i, x, y;
for (i = 1; i <= SCC; i++)
if (!ru[i])
q[++tail] = i;
if (tail - head > 1)
return true;
while (head ^ tail)
{
x = q[++head];
for (i = cfi[x]; i; i = cne[i])
{
y = cdi[i];
ru[y]--;
if (!ru[y])
{
q[++tail] = y;
if (tail - head > 1)
return true;
}
}
}
return false;
}
int main()
{
int i, n, m, x, y, t;
t = re();
while (t--)
{
n = re();
m = re();
memset(fi, 0, sizeof(fi));
memset(cfi, 0, sizeof(cfi));
memset(dfn, 0, sizeof(dfn));
memset(low, 0, sizeof(low));
memset(bl, 0, sizeof(bl));
memset(ru, 0, sizeof(ru));
l = lc = SCC = ti = 0;
for (i = 1; i <= m; i++)
{
b[i].x = re();
b[i].y = re();
add(b[i].x, b[i].y);
}
for (i = 1; i <= n; i++)
if (!dfn[i])
tarjan(i);
for (i = 1; i <= m; i++)
{
x = bl[b[i].x];
y = bl[b[i].y];
if (x ^ y)
{
add_c(x, y);
ru[y]++;
}
}
if (topsort())
printf("No
");
else
printf("Yes
");
}
return 0;
}