• POJ1966 Cable TV Network


    原题链接

    割去点使得无向图不连通,和最小割相似。
    我们可以将点转化成边,这样就能跑最小割了。
    枚举每两个不能直接到达的点(S,T),使得删去一些点(除去这两个点)使得这两个点不连通(若两点能直接到达显然无解),然后我们按下面的方法建立新图:

    1. 将每个点(x),拆成两个点(x_1,x_2),对(forall x e S,x e T),由(x_1)(x_2)连一条容量为(1)的边。
    2. 对于原来图中每条边((x,y)),连接((x_2,y_1))((y_2,x_1)),容量为(+infty)

    然后以(S_2)为源点,(T_1)为汇点,求最小割即可。
    注意(nleqslant 1)或最终求出的最小割为(+infty)时,答案为(n)

    #include<cstdio>
    #include<cstring>
    using namespace std;
    const int N = 1010;
    const int M = 1e4 + 10;
    struct eg {
    	int x, y;
    };
    eg b[M];
    int fi[N], ne[M], di[M], da[M], cu[N], de[N], q[M << 4], l, st, ed, n, m;
    bool a[52][52];
    inline int re()
    {
    	int x = 0;
    	char c = getchar();
    	bool p = 0;
    	for (; c <'0' || c > '9'; c = getchar())
    		p |= c == '-';
    	for (; c >= '0' && c <= '9'; c = getchar())
    		x = x * 10 + c - '0';
    	return p ? -x : x;
    }
    inline void add(int x, int y, int z)
    {
    	di[++l] = y;
    	da[l] = z;
    	ne[l] = fi[x];
    	fi[x] = l;
    	di[++l] = x;
    	da[l] = 0;
    	ne[l] = fi[y];
    	fi[y] = l;
    }
    inline int minn(int x, int y)
    {
    	return x < y ? x : y;
    }
    bool bfs()
    {
    	int head = 0, tail = 1, i, x, y;
    	memset(de, 0, sizeof(de));
    	de[st] = 1;
    	q[1] = st;
    	while (head ^ tail)
    	{
    		x = q[++head];
    		for (i = fi[x]; i; i = ne[i])
    			if (!de[y = di[i]] && da[i] > 0)
    			{
    				de[y] = de[x] + 1;
    				if (!(y ^ ed))
    					return true;
    				q[++tail] = y;
    			}
    	}
    	return false;
    }
    int dfs(int x, int k)
    {
    	int y, mi;
    	if (!(x ^ ed))
    		return k;
    	for (int &i = cu[x]; i; i = ne[i])
    		if (!(de[y = di[i]] ^ (de[x] + 1)) && da[i] > 0)
    		{
    			mi = dfs(y, minn(k, da[i]));
    			if (mi > 0)
    			{
    				da[i] -= mi;
    				da[i ^ 1] += mi;
    				return mi;
    			}
    		}
    	return 0;
    }
    void bumap()
    {
    	int i;
    	memset(fi, 0, sizeof(fi));
    	l = 1;
    	for (i = 1; i <= n; i++)
    		if (i ^ (st - n) && i ^ ed)
    			add(i, i + n, 1);
    	for (i = 1; i <= m; i++)
    	{
    		add(b[i].x + n, b[i].y, 1e9);
    		add(b[i].y + n, b[i].x, 1e9);
    	}
    }
    int main()
    {
    	int i, j, x, y, s, mi, k, o;
    	while (scanf("%d%d", &n, &m) == 2)
    	{
    		o = n << 1;
    		mi = 1e9;
    		memset(a, 0, sizeof(a));
    		for (i = 1; i <= m; i++)
    		{
    			x = re() + 1;
    			y = re() + 1;
    			a[x][y] = a[y][x] = 1;
    			b[i].x = x;
    			b[i].y = y;
    		}
    		for (i = 1; i < n; i++)
    			for (j = i + 1; j <= n; j++)
    				if (!a[i][j])
    				{
    					st = i + n;
    					ed = j;
    					bumap();
    					s = 0;
    					while (bfs())
    					{
    						for (k = 1; k <= o; k++)
    							cu[k] = fi[k];
    						while ((x = dfs(st, 1e9)) > 0)
    							s += x;
    					}
    					mi = minn(mi, s);
    				}
    		printf("%d
    ", mi == 1e9 || n <= 1 ? n : mi);
    	}
    	return 0;
    }
    
  • 相关阅读:
    括号匹配(栈)
    扫雷计算概率
    勘探油田(深度优先搜索)
    扫雷
    Data Analysis 总结笔记:Data Cleaning
    Data Analysis 总结笔记:EDA
    C#StringsGetting Started with Strings
    C#中Trim(),TrimStart(),TrimEnd()的实现及用法
    跨站脚本攻击漏洞防范与解决办法
    APACHE日志格式定义,APACHE日志参数说明
  • 原文地址:https://www.cnblogs.com/Iowa-Battleship/p/9668535.html
Copyright © 2020-2023  润新知