• POJ3683 Priest John's Busiest Day


    原题链接

    (2-SAT)模板题。
    对于有时间重叠的婚礼转换成(2-SAT)的命题形式连边,用(tarjan)找强连通分量并判断,确定方案即可。
    然而一道模板题,我因为数组开小了调了一晚上。。。

    #include<cstdio>
    using namespace std;
    const int N = 2010;
    const int M = 1e6 + 10;
    struct dd {
    	int x[2], y[2], z, S[2];
    };
    dd a[N >> 1];
    int fi[N], di[M << 2], ne[M << 2], dfn[N], low[N], st[N], bl[N], l, ti, tp, SCC;
    bool v[N];
    inline int re()
    {
    	int x = 0;
    	char c = getchar();
    	bool p = 0;
    	for (; c < '0' || c > '9'; c = getchar())
    		p |= c == '-';
    	for (; c >= '0' && c <= '9'; c = getchar())
    		x = x * 10 + c - '0';
    	return p ? -x : x;
    }
    inline void add(int x, int y)
    {
    	di[++l] = y;
    	ne[l] = fi[x];
    	fi[x] = l;
    }
    inline int minn(int x, int y)
    {
    	return x < y ? x : y;
    }
    void tarjan(int x)
    {
    	int i, y;
    	dfn[x] = low[x] = ++ti;
    	st[++tp] = x;
    	v[x] = 1;
    	for (i = fi[x]; i; i = ne[i])
    	{
    		y = di[i];
    		if (!dfn[y])
    		{
    			tarjan(y);
    			low[x] = minn(low[x], low[y]);
    		}
    		else
    			if (v[y])
    				low[x] = minn(low[x], dfn[y]);
    	}
    	if (!(dfn[x] ^ low[x]))
    	{
    		++SCC;
    		do
    		{
    			y = st[tp--];
    			bl[y] = SCC;
    			v[y] = 0;
    		} while (x ^ y);
    	}
    }
    void pr(int p, int i)
    {
    	printf("%02d:%02d ", a[i].x[p], a[i].y[p]);
    	a[i].y[p] += a[i].z;
    	a[i].x[p] += a[i].y[p] / 60;
    	a[i].y[p] %= 60;
    	printf("%02d:%02d
    ", a[i].x[p], a[i].y[p]);
    }
    int main()
    {
    	int i, n, j, x, y, z;
    	n = re();
    	for (i = 1; i <= n; i++)
    	{
    		a[i].x[0] = re();
    		a[i].y[0] = re();
    		a[i].x[1] = re();
    		a[i].y[1] = re();
    		a[i].z = re();
    		a[i].S[0] = 60 * a[i].x[0] + a[i].y[0];
    		a[i].S[1] = 60 * a[i].x[1] + a[i].y[1] - a[i].z;
    		while (a[i].y[1] < a[i].z)
    		{
    			a[i].x[1]--;
    			a[i].y[1] += 60;
    		}
    		a[i].y[1] -= a[i].z;
    	}
    	for (i = 1; i < n; i++)
    		for (j = i + 1; j <= n; j++)
    			for (x = 0; x < 2; x++)
    				for (y = 0; y < 2; y++)
    					if (!(a[i].S[x] + a[i].z <= a[j].S[y] || a[i].S[x] >= a[j].S[y] + a[j].z))
    					{
    						add(i + x * n, j + (y ^ 1) * n);
    						add(j + y * n, i + (x ^ 1) * n);
    					}
    	for (i = 1; i <= (n << 1); i++)
    		if (!dfn[i])
    			tarjan(i);
    	for (i = 1; i <= n; i++)
    		if (!(bl[i] ^ bl[i + n]))
    		{
    			printf("NO");
    			return 0;
    		}
    	printf("YES
    ");
    	for (i = 1; i <= n; i++)
    	{
    		if (bl[i] > bl[i + n])
    			pr(1, i);
    		else
    			pr(0, i);
    	}
    	return 0;
    }
    
  • 相关阅读:
    Spring中配置和读取多个Properties文件
    python 数据清洗
    python excel 文件合并
    Pandas -- Merge,join and concatenate
    python 数据合并
    python pandas
    python Numpy
    EXCEL 导入 R 的几种方法 R—readr和readxl包
    R语言笔记完整版
    第十三章 多项式回归分析
  • 原文地址:https://www.cnblogs.com/Iowa-Battleship/p/9637415.html
Copyright © 2020-2023  润新知