• BZOJ2330或洛谷3275 [SCOI2011]糖果


    BZOJ原题链接

    洛谷原题链接

    很明显的差分约束,但数据范围较大,朴素(SPFA)判正环求解会(T)(理论上如此,但我看到有挺多人用朴素的还跑得挺快。。),所以需要优化。
    我们所建立的有向图中所有边的权值只有(0)(1),而且若图中有环,那么环上所有边的权值必须为(0),否则无解。
    所以我们可以用(tarjan)找强连通分量并判断每个强连通分量有没有包含权值为(1)的边,有则无解。
    若有解,就进行缩点,最后得到一张(DAG),直接跑(SPFA)即可(也可按拓扑序(DP),复杂度更低)。
    注意有一个数据点是一条长(10^5)的链,若(SPFA)使用普通数组模拟队列会炸,须用循环队列或(STL)

    #include<cstdio>
    #include<cstring>
    using namespace std;
    const int N = 1e5 + 10;
    const int M = 4e5 + 10;
    int fi[N], di[M], ne[M], cfi[N], cdi[M], cne[M], cda[M], da[M], dfn[N], low[N], st[N], bl[N], nw[N], dis[N], si[N], q[M], l, lc, tp, SCC, ti, k;
    bool v[N], p;
    inline int re()
    {
    	int x = 0;
    	char c = getchar();
    	bool p = 0;
    	for (; c < '0' || c > '9'; c = getchar())
    		p |= c == '-';
    	for (; c >= '0' && c <= '9'; c = getchar())
    		x = x * 10 + c - '0';
    	return p ? -x : x;
    }
    inline void add(int x, int y, int z)
    {
    	di[++l] = y;
    	da[l] = z;
    	ne[l] = fi[x];
    	fi[x] = l;
    }
    inline void add_c(int x, int y, int z)
    {
    	cdi[++lc] = y;
    	cda[lc] = z;
    	cne[lc] = cfi[x];
    	cfi[x] = lc;
    }
    inline int minn(int x, int y)
    {
    	return x < y ? x : y;
    }
    inline bool judge(int x)
    {
    	int i;
    	for (i = fi[x]; i; i = ne[i])
    		if (!(bl[di[i]] ^ SCC) && da[i])
    			return true;
    	return false;
    }
    void tarjan(int x)
    {
    	int i, y;
    	dfn[x] = low[x] = ++ti;
    	st[++tp] = x;
    	v[x] = 1;
    	for (i = fi[x]; i && !p; i = ne[i])
    	{
    		y = di[i];
    		if (!dfn[y])
    		{
    			tarjan(y);
    			low[x] = minn(low[x], low[y]);
    		}
    		else
    			if (v[y])
    				low[x] = minn(low[x], dfn[y]);
    	}
    	if (!(low[x] ^ dfn[x]))
    	{
    		SCC++;
    		k = 0;
    		do
    		{
    			y = st[tp--];
    			v[y] = 0;
    			bl[y] = SCC;
    			nw[++k] = y;
    			si[SCC]++;
    		} while (x ^ y);
    		for (i = 1; i <= k && !p; i++)
    			if (judge(nw[i]))
    				p = 1;
    	}
    }
    int main()
    {
    	int i, n, m, x, y, z, head = 0, tail = 1;
    	long long s = 0;
    	n = re();
    	m = re();
    	for (i = 1; i <= m; i++)
    	{
    		z = re();
    		x = re() + 1;
    		y = re() + 1;
    		if (!(z ^ 1))
    		{
    			add(x, y, 0);
    			add(y, x, 0);
    		}
    		else
    			if (!(z ^ 2))
    				add(x, y, 1);
    			else
    				if (!(z ^ 3))
    					add(y, x, 0);
    				else
    					if (!(z ^ 4))
    						add(y, x, 1);
    					else
    						add(x, y, 0);
    	}
    	for (i = 1; i <= n; i++)
    		add(1, i + 1, 1);
    	for (i = 1; i <= n + 1 && !p; i++)
    		if (!dfn[i])
    			tarjan(i);
    	if (p)
    	{
    		printf("-1");
    		return 0;
    	}
    	for (z = 1; z <= n + 1; z++)
    		for (i = fi[z]; i; i = ne[i])
    		{
    			y = bl[di[i]];
    			x = bl[z];
    			if (x ^ y)
    				add_c(x, y, da[i]);
    		}
    	memset(dis, 250, sizeof(dis));
    	dis[bl[1]] = 0;
    	q[1] = bl[1];
    	while (head ^ tail)
    	{
    		x = q[++head];
    		if (!(head ^ M))
    			head = 1;
    		v[x] = 0;
    		for (i = cfi[x]; i; i = cne[i])
    		{
    			y = cdi[i];
    			if (dis[y] < dis[x] + cda[i])
    			{
    				dis[y] = dis[x] + cda[i];
    				if (!v[y])
    				{
    					q[++tail] = y;
    					if (!(tail ^ M))
    						tail = 1;
    					v[y] = 1;
    				}
    			}
    		}
    	}
    	for (i = 1; i <= SCC; i++)
    		if (i ^ bl[1])
    			s += 1LL * si[i] * dis[i];
    	printf("%lld", s);
    	return 0;
    }
    
  • 相关阅读:
    Java程序员从笨鸟到菜鸟全部博客目录
    Problem I
    Problem I
    Problem S
    Problem S
    Problem X
    Problem X
    Problem Q
    Problem Q
    Ellipse
  • 原文地址:https://www.cnblogs.com/Iowa-Battleship/p/9633725.html
Copyright © 2020-2023  润新知