• [SCOI2018]游泳池(计算几何+分数规划+最大权闭合子图)


    题目链接

    https://www.luogu.org/problemnew/show/U56187

    注:题面参考了网上的其他博客,并非原题题面,因此数据范围可能有误。数据为原创数据。

    题解

    其实就是许多板子码到一起。

    首先对于边缘上的任意一点 (u),假设离它最远的顶点为 (A),那么我们称点 (u) 位于顶点 (A) 的控制范围之中。我们考虑在没有石雕的情况下怎么求出每个顶点的控制范围。对于除顶点 (A) 之外的任意一个顶点 (B),连接 (AB) 并作 (AB) 的中垂线 (l),显然若仅考虑顶点 (A) 与顶点 (B),那么直线 (l) 两侧中距顶点 (A) 较远的那一侧内的点会位于顶点 (A) 的控制范围之中。因此,若需要在考虑其余所有顶点的情况下求出顶点 (A) 的控制范围,只需要对其余每一个顶点都求出顶点 (A) 与其连线的中垂线,然后对所有直线与凸多边形本身求半平面交即可。当有石雕时,我们还需要求出每个点对应的控制范围中被石雕遮挡的范围。对于每个顶点 (A),我们可以直接暴力枚举石雕,找到顶点 (A) 与石雕对应的圆的两条切线,那么切线之间的范围就是顶点 (A) 不能直接到达的范围。我们对所有石雕遮挡的范围求交后对顶点 (A) 本身的控制范围求并即可,这一步可以通过对每个顶点做一次扫描线来实现。

    接下来考虑会移除石雕的情况。

    首先,求答案式 (frac{E}{t + kx}) 的最值显然可以使用分数规划。设原本在没有移走任何石雕的情况下,所有权值为 (1) 的顶点的未被石雕遮挡的控制范围占凸多边形总边长的比值为 (p_0),那么显然有 (E = p_0t)。如果移走了 (x) 个石雕后,新增加的控制范围占泳池总边长的比值为 (p'),那么显然新的期望收益 (E' = (p_0 + p')t),故我们二分答案 ({ m ans}) 后只需判断是否存在一种移除方式,满足移除后有 (frac{(p_0 + p')t}{t + kx} geq { m ans}),即 (p_0t + p't - { m ans}cdot t - kxcdot { m ans} geq 0)。当 ({ m ans}) 确定时,(p_0t - { m ans} cdot t) 为定值,因此我们只需考虑求 (p't - kxcdot { m ans}) 的最大值。

    我们将式子 (p't - kxcdot { m ans}) 中的两部分分开考虑,整个问题其实可视为一个最大权闭合子图模型。具体地,若我们将一个石雕看做权值为 (-k cdot { m ans}) 的结点,将一段被若干石雕覆盖的区域看做是权值为 (p_xt)(p_x) 为该段区域的长度占凸多边形总边长的比值)的结点,由于凸多边形上的一段区域可能同时被多个石雕所遮挡,那么选择一段被覆盖的区域就意味着要选择覆盖该区域的所有石雕。我们的目的就是保证合法的情况下选择出权值和最大的若干个点。因此,我们可以建图跑最小割来判断 ({ m ans}) 的合法性。对于如何求出每一段区域被哪些石雕覆盖,我们只需在最开始做扫描线时一并记录即可。

    时间复杂度为 (O(n^2m + (n(n + m) + { m maxflow})log w)),但常数较大。

    代码

    我的实现略显复杂。

    #include<bits/stdc++.h>
    
    using namespace std;
    
    const int N = 510, max_node = 3e4 + 10;
    const double eps = 1e-10, inf = 1e9;
    
    struct point {
      int id;
      double x, y;
    
      point () {}
      point (double x, double y): x(x), y(y) {}
    
      point operator + (point a) {
        return point (x + a.x, y + a.y);
      }
    
      point operator - (point a) {
        return point (x - a.x, y - a.y);
      }
    
      point operator * (double a) {
        return point (x * a, y * a);
      }
    
      point operator / (double a) {
        return point (x / a, y / a);
      }
    
      bool operator == (const point& a) const {
        return fabs(x - a.x) < eps && fabs(y - a.y) < eps;
      }
    
      bool operator != (const point& a) const {
        return !(*this == a);
      }
    } points[N], point_q[N << 1];
    
    double dot(point a, point b) {
      return a.x * b.x + a.y * b.y;
    }
    
    double cross(point a, point b) {
      return a.x * b.y - a.y * b.x;
    }
    
    double dist(point a, point b) {
      return sqrt(dot(a - b, a - b));
    }
    
    point rotate(point a, double rad) {
      return point (a.x * cos(rad) - a.y * sin(rad), a.x * sin(rad) + a.y * cos(rad));
    }
    
    bool on_segment(point p, point a, point b) {
      double d = dist(a, b);
      return dist(a, p) <= d && dist(b, p) <= d;
    }
    
    struct circle {
      point center;
      double r;
    
      circle () {}
      circle (point center, double r): center(center), r(r) {}
    } stone[N];
    
    struct line {
      int id;
      point p, v;
      double angle;
    
      line () {}
      line (point p, point v, int id): p(p), v(v), id(id) {
        angle = atan2(v.y, v.x);
      }
    
      bool operator < (const line& a) const {
        return angle < a.angle;
      }
    } line_q[N << 1];
    
    int n, m, days, cost, type[N];
    double p0, all_dist;
    vector<pair<point, point>> control[N][N];
    
    point line_intersection(line a, line b) {
      if (fabs(cross(a.v, b.v)) > eps) {
        double t = cross(b.v, a.p - b.p) / cross(a.v, b.v);
        return a.p + a.v * t;
      } else {
        return point (inf, inf);
      }
    }
    
    bool on_left(point p, line x) {
      return cross(x.v, p - x.p) > 0;
    }
    
    vector<line> half_plane_intersection(vector<line>& s) {
      sort(s.begin(), s.end());
      int first = 0, last = 0;
      line_q[0] = s[0];
      for (int i = 1; i < s.size(); ++i) {
        for (; first < last && !on_left(point_q[last - 1], s[i]); --last);
        for (; first < last && !on_left(point_q[first], s[i]); ++first);
        line_q[++last] = s[i];
        if (first < last && fabs(cross(line_q[last].v, line_q[last - 1].v)) < eps) {
          --last;
          if (on_left(s[i].p, line_q[last])) {
            line_q[last] = s[i];
          }
        }
        if (first < last) {
          point_q[last - 1] = line_intersection(line_q[last - 1], line_q[last]);
        }
      }
      for (; first < last && !on_left(point_q[last - 1], line_q[first]); --last);
      vector<line> result;
      for (int i = first; i <= last; ++i) {
        result.push_back(line_q[i]);
      }
      return result;
    }
    
    struct edge {
      int to;
      double refer, cap, flow;
    
      edge () {}
      edge (int to, double refer): to(to), refer(refer) {}
    };
    
    vector<edge> edges;
    vector<int> graph[max_node];
    int s, t, node_cnt, stone_id[N], cur[max_node], dis[max_node];
    double dinic_flow;
    
    void add_edge(int u, int v, double cap) {
      edges.emplace_back(v, cap);
      edges.emplace_back(u, 0);
      graph[u].push_back(edges.size() - 2);
      graph[v].push_back(edges.size() - 1);
    }
    
    bool bfs() {
      queue<int> que;
      memset(dis, 0, sizeof dis);
      memset(cur, 0, sizeof cur);
      que.push(s);
      dis[s] = 1;
      while (!que.empty()) {
        int x = que.front();
        que.pop();
        for (auto v : graph[x]) {
          edge& e = edges[v];
          if (e.cap - e.flow > eps && !dis[e.to]) {
            dis[e.to] = dis[x] + 1;
            que.push(e.to);
          }
        }
      }
      return dis[t] > 0;
    }
    
    double dfs(int u, double a) {
      if (u == t || a < eps) {
        return a;
      } else {
        double flow = 0, f;
        for (int& i = cur[u]; i < graph[u].size(); ++i) {
          edge& e = edges[graph[u][i]];
          if (dis[e.to] == dis[u] + 1 && (f = dfs(e.to, min(a, e.cap - e.flow))) > eps) {
            e.flow += f;
            edges[graph[u][i] ^ 1].flow -= f;
            flow += f;
            a -= f;
            if (a < eps) {
              break;
            }
          }
        }
        return flow;
      }
    }
    
    double dinic() {
      for (; bfs(); dinic_flow -= dfs(s, inf));
      return dinic_flow;
    }
    
    struct state {
      int p_id, stone_id;
      double d;
      point p;
    
      state () {}
      state (int p_id, int stone_id, double d, point p): p_id(p_id), stone_id(stone_id), d(d), p(p) {}
    
      bool operator < (const state& a) const {
        return p_id == a.p_id ? d < a.d : p_id < a.p_id;
      }
    };
    
    vector<state> cover[N];
    bool appeared[N];
    
    void add_edge(int i, int j, point a, point b) {
      if (control[i][j].size()) {
        point p = control[i][j][0].first;
        point q = control[i][j][0].second;
        double dist0 = dist(points[j], p);
        double dist1 = dist(points[j], a);
        double dist2 = dist(points[j], q);
        double dist3 = dist(points[j], b);
        if (max(dist0, dist1) <= min(dist2, dist3)) {
          point l = dist0 > dist1 ? p : a;
          point r = dist2 < dist3 ? q : b;
          ++node_cnt;
          double d = dist(l, r) / all_dist;
          p0 -= d;
          add_edge(s, node_cnt, d * days);
          dinic_flow += d * days;
          for (int k = 1; k <= m; ++k) {
            if (appeared[k]) {
              add_edge(node_cnt, stone_id[k], inf);
            }
          }
        }
      }
    }
    
    void add_edge() {
      s = ++node_cnt;
      t = ++node_cnt;
      for (int i = 1; i <= m; ++i) {
        stone_id[i] = ++node_cnt;
        add_edge(stone_id[i], t, -cost);
      }
      for (int i = 1; i <= n; ++i) {
        if (type[i]) {
          memset(appeared, false, sizeof appeared);
          for (int j = 0, k, last = -1; j < cover[i].size(); j = k) {
            if (~last) {
              for (int l = last == n ? 1 : last + 1; l != cover[i][j].p_id; l = l == n ? 1 : l + 1) {
                add_edge(i, l, points[l], points[l == n ? 1 : l + 1]);
              }
            }
            for (k = j; k < cover[i].size() && cover[i][j].p_id == cover[i][k].p_id; ++k);
            last = cover[i][j].p_id;
            add_edge(i, last, points[last], cover[i][j].p);
            for (int l = j; l < k; ++l) {
              int u = cover[i][l].stone_id;
              if (!appeared[u]) {
                appeared[u] = true;
              } else {
                appeared[u] = false;
              }
              if (l + 1 < k) {
                add_edge(i, last, cover[i][l].p, cover[i][l + 1].p);
              }
            }
            add_edge(i, last, cover[i][k - 1].p, points[last == n ? 1 : last + 1]);
          }
        }
      }
    }
    
    bool check(double answer) {
      dinic_flow = 0;
      for (auto& v : edges) {
        v.flow = 0;
        if (v.refer >= 0) {
          v.cap = v.refer;
          if (v.refer < inf) {
            dinic_flow += v.refer;
          }
        } else {
          v.cap = -answer * v.refer;
        }
      }
      return (p0 - answer) * days + dinic() >= 0;
    }
    
    int main() {
      scanf("%d%d%d%d", &n, &m, &days, &cost);
      for (int i = 1; i <= n; ++i) {
        scanf("%lf%lf%d", &points[i].x, &points[i].y, &type[i]);
      }
      for (int i = 1; i <= n; ++i) {
        if (type[i]) {
          vector<line> half_plane;
          for (int j = 1; j <= n; ++j) {
            int k = j == n ? 1 : j + 1;
            half_plane.emplace_back(points[j], points[k] - points[j], j);
            if (i != j) {
              point mid = point ((points[i].x + points[j].x) / 2, (points[i].y + points[j].y) / 2);
              point v = point (points[j].y - points[i].y, points[i].x - points[j].x);
              half_plane.emplace_back(mid, v, -1);
            }
          }
          vector<line> convex_hull = half_plane_intersection(half_plane);
          if (convex_hull.size() > 2) {
            for (int j = 0; j < convex_hull.size(); ++j) {
              if (~convex_hull[j].id) {
                int l = j == 0 ? convex_hull.size() - 1 : j - 1;
                int r = j + 1 == convex_hull.size() ? 0 : j + 1;
                point a = line_intersection(convex_hull[l], convex_hull[j]);
                point b = line_intersection(convex_hull[j], convex_hull[r]);
                p0 += dist(a, b);
                control[i][convex_hull[j].id].emplace_back(a, b);
              }
            }
          }
        }
      }
      for (int i = 1; i <= n; ++i) {
        int j = i == n ? 1 : i + 1;
        all_dist += dist(points[i], points[j]);
      }
      p0 /= all_dist;
      for (int i = 1; i <= m; ++i) {
        scanf("%lf%lf%lf", &stone[i].center.x, &stone[i].center.y, &stone[i].r);
      }
      for (int i = 1; i <= n; ++i) {
        if (type[i]) {
          for (int j = 1; j <= m; ++j) {
            point v = stone[j].center - points[i];
            double angle = asin(stone[j].r / dist(points[i], stone[j].center));
            line a = line (points[i], rotate(v, angle), -1);
            line b = line (points[i], rotate(v, -angle), -1);
            for (int k = 1; k <= n; ++k) {
              int p = k == n ? 1 : k + 1;
              point intersection = line_intersection(line(points[k], points[p] - points[k], -1), a);
              if (intersection != points[i] && on_segment(intersection, points[k], points[p])) {
                cover[i].emplace_back(k < i ? k + n : k, j, dist(points[k], intersection), intersection);
              }
              intersection = line_intersection(line(points[k], points[p] - points[k], -1), b);
              if (intersection != points[i] && on_segment(intersection, points[k], points[p])) {
                cover[i].emplace_back(k < i ? k + n : k, j, dist(points[k], intersection), intersection);
              }
            }
          }
          sort(cover[i].begin(), cover[i].end());
          for (auto& v : cover[i]) {
            if (v.p_id > n) {
              v.p_id -= n;
            }
          }
        }
      }
      add_edge();
      double l = 0, r = 1;
      while (r - l > 1e-5) {
        double mid = (l + r) / 2;
        if (check(mid)) {
          l = mid;
        } else {
          r = mid;
        }
      }
      printf("%.4lf
    ", l);
      return 0;
    }
    
  • 相关阅读:
    2017-2018-1 20155214 实验五 通讯协议设计
    2017-2018-1 20155214 《信息安全系统设计基础》第13周学习总结
    2017-2018-1 20155214 《信息安全系统设计基础》 第9周课下测试-mypwd
    2017-2018-1 20155214 《信息安全系统设计基础》 第11周学习总结
    2017-2018-1 20155214 20155335《信息安全技术基础》 实验3
    2017-2018-1 20155214 《信息安全系统设计基础》实验三 并发程序
    2017-2018-1 20155214 《信息安全系统设计基础》 第9周学习总结
    2017-2018-1 20155214 《信息安全系统设计基础》 第8周学习总结
    2017-2018-1 20155214 《信息安全系统设计基础》 第8周课下作业
    2017-2018-1 20155214 《信息安全系统设计基础》 第7周学习总结
  • 原文地址:https://www.cnblogs.com/ImagineC/p/10121566.html
Copyright © 2020-2023  润新知