• 绘图


    from pyecharts import options as opts  # 全局、系列配置
    from pyecharts.charts import Bar, Grid, Line  # 柱形图
    from pyecharts.globals import ThemeType  # 主题风格
    from pyecharts.charts import Kline, Line, Bar, Gauge, Pie, Scatter, TreeMap  # K线图、线形图、柱状图、仪表盘、饼图、散点图、矩形树图
    from pyecharts.charts import Grid, Tab  # 组合组件、分页组件
    from pyecharts.components import Table  # 表格组件
    from pyecharts.options import ComponentTitleOpts
    from pyecharts.commons.utils import JsCode
    
    import time  # 时间模块
    #import pandas as pd  # Pandas模块
    
    
    
    
    ########################################################### Pandas数据读写操作 ###########################################################
    class Pands_Handler:
        # 初始化
        def __init__(self):
            self.start = start
            self.end = end
    
        # pandas查询数据
        def data_query(self, table):
            sql = '''select * from {table}'''.format(table=table)
    
    
    ########################################################### 宏观资金流动性 ###########################################################
    class DataCollection:
    
        # 正回购、逆回购
        def get_data_gksccz(self):
            data = Pands_Handler().data_query('a_china_znhg')
    
            data = data.replace({'正回购': -1, '逆回购': 1})
            data['amount'] = data['deal_amount'] * data['trading_method']
            data = data[['operation_from_date', 'amount']]
            data.columns = ['日期', '交易金额']
    
            return data
    
        # 货币供应量
        def get_data_hbgyl(self):
            data = Pands_Handler().data_query('a_china_money_supply')
    
            data.columns = ['日期', 'M2', 'M1', 'M0']
    
            return data
    
        # 上证、深证、创业板指数
        def get_data_index(self):
            data = Pands_Handler().data_query('a_index_daily')
    
            data1 = data[data['scode'] == '000001.SH']  # 上证指数
            data2 = data[data['scode'] == '399001.SZ']  # 深证指数
            data3 = data[data['scode'] == '399006.SZ']  # 创业板指数
    
            data1 = data1[['date', 'oprice', 'hprice', 'lprice', 'cprice', 'pct_chg', 'amount']]
            data2 = data2[['date', 'oprice', 'hprice', 'lprice', 'cprice', 'pct_chg', 'amount']]
            data3 = data3[['date', 'oprice', 'hprice', 'lprice', 'cprice', 'pct_chg', 'amount']]
    
            data1.columns = ['日期', '开盘价', '最高价', '最低价', '收盘价', '涨跌幅', '成交额']
            data2.columns = ['日期', '开盘价', '最高价', '最低价', '收盘价', '涨跌幅', '成交额']
            data3.columns = ['日期', '开盘价', '最高价', '最低价', '收盘价', '涨跌幅', '成交额']
    
            return data1, data2, data3
    
        # 沪深股通资金
        def get_data_hsgt(self):
            data = Pands_Handler().data_query('a_hsgt_moneyflow')
    
            data.columns = ['日期', '沪股通', '深股通', '北向资金']
    
            return data
    
        # Shibor利率
        def get_data_shibor(self):
            data = Pands_Handler().data_query('a_shibor')
    
            data = data[['date', 'pre_night_shibor']]
            data.columns = ['日期', '隔夜shibor']
    
            return data
    
        # 沪深两市成交额
        def get_data_hsls(self):
            data = Pands_Handler().data_query('a_stock_daily')
    
            data = data[['date','amount']]
            data = data.groupby('date').sum().reset_index()
            data.columns = ['日期','成交额']
    
            return data
    
        # 沪深竞价成交额
        def get_data_call(self):
            data = Pands_Handler().data_query('a_stock_call_auction')
    
            data = data[['date','amount']]
            data = data.groupby('date').sum().reset_index()
            data.columns = ['日期','成交额']
    
            return data
    
        # 龙虎榜席位成交
        def get_data_lhb_classify(self):
            data = Pands_Handler().data_query('a_stock_lhb_list')
    
            # youziicon:一线游资(1)、顶级游资(2)、知名游资(3)、机构(4)、沪股通(5)、深股通(6)、其他(0)
            data['amount'] = data['buy'] + data['sell']
            data = data[['date', 'direction', 'amount', 'youziicon']]
            data = pd.pivot_table(data, values='amount', columns='direction', index=['date', 'youziicon'], aggfunc='sum', margins=True)
            data = data.reset_index()
            data = data[data['date'] != 'All']
            data = data.replace({0: '其他', 1: '一线游资', 2: '顶级游资', 3: '知名游资', 4: '机构', 5: '沪股通', 6: '深股通'})
            data.columns = ['日期', '资金类型', '买入额', '卖出额', '净买入额']
    
            return data
    
        # 大资金流向
        def get_data_dzjlx(self):
            data = Pands_Handler().data_query('a_stock_big_money')
    
            data['md_net_amount'] = data['bmd_amount'] - data['smd_amount']
            data['lg_net_amount'] = data['blg_amount'] - data['slg_amount']
            data['elg_net_amount'] = data['belg_amount'] - data['selg_amount']
    
            data = data[['date','bmd_amount','smd_amount','md_net_amount','blg_amount','slg_amount','lg_net_amount','belg_amount','selg_amount','elg_net_amount','net_amount']]
            data = data.groupby('date').sum().reset_index()
            data.columns = ['日期','中单买入','中单卖出','中单净流入','大单买入','大单卖出','大单净流入','超大单买入','超大单卖出','超大单净流入','净流入']
    
            print(data)
    
        # 市场情绪
        def get_data_scqx(self):
            data1 = Pands_Handler().data_query('a_market_limit_up_count')
            data2 = Pands_Handler().data_query('a_stock_scqx_zdtjs')
            data3 = Pands_Handler().data_query('a_stock_pjgnum')
            data4 = Pands_Handler().data_query('a_stock_xgdnum')
            data5 = Pands_Handler().data_query('a_stock_limit_list')
    
    class Market:
    
        # 特殊柱状图
        def sbar(self, x_data, y_data, series_names, title, subtitle):
            c = (
                Bar()
                    .add_xaxis(xaxis_data=x_data)
                    .add_yaxis(
                        series_name=series_names,
                        y_axis=y_data,
                        is_large=True,
                        large_threshold=400,
                        label_opts=opts.LabelOpts(
                            is_show=False,
                        ),
                    )
                    .set_global_opts(
                        title_opts=opts.TitleOpts(
                            title=title,
                            subtitle=subtitle,
                            item_gap=10,
                            title_textstyle_opts=opts.TextStyleOpts(
                                font_family='Microsoft YaHei',
                                font_weight='bolder',
                                font_size=14,
                                color='',
                            ),
                            subtitle_textstyle_opts=opts.TextStyleOpts(
                                font_family=None,
                                font_size=10,
                                color='',
                            ),
                        ),
                        legend_opts=opts.LegendOpts(
                            is_show=True,
                            pos_right=5,
                            orient='vertical',
                            legend_icon='rect',
                        ),
    
                        tooltip_opts=opts.TooltipOpts(
                            is_show=True,
                            trigger='axis',
                            trigger_on='click',
                            formatter="{a}: {c}",
                            textstyle_opts=opts.TextStyleOpts(
                                font_family='Arial',
                                font_size=14,
                            )
    
                        ),
                        visualmap_opts=opts.VisualMapOpts(
                            is_piecewise=True,
                            pieces=[
                                {"max": 0, "color": 'green'},
                                {"min": 0, "color": 'red'}
                            ]
                        )
                    )
                    .render('shangzheng.html')
            )
    
        def cbar(self,x_data,series_names,y_data):
            bar_1 = (
                Bar()
                    .add_xaxis(xaxis_data=data["times"])
                    .add_yaxis(
                    series_name="Volumn",
                    yaxis_data=data["vols"],
                    xaxis_index=1,
                    yaxis_index=1,
                    label_opts=opts.LabelOpts(is_show=False),
    
                    # 改进后在 grid 中 add_js_funcs 后变成如下
                    itemstyle_opts=opts.ItemStyleOpts(
                        color=JsCode(
                            """
                        function(params) {
                            var colorList;
                            if (barData[params.dataIndex][1] > barData[params.dataIndex][0]) {
                                colorList = '#ef232a';
                            } else {
                                colorList = '#14b143';
                            }
                            return colorList;
                        }
                        """
                        )
                    ),
                )
                    .set_global_opts(
                    xaxis_opts=opts.AxisOpts(
                        type_="category",
                        grid_index=1,
                        axislabel_opts=opts.LabelOpts(is_show=False),
                    ),
                    legend_opts=opts.LegendOpts(is_show=False),
                )
            )
    
    
    
        # 常规折线图
        def cline(self,x_data):
            c = (
                Line()
                    .add_xaxis(xaxis_data=x_data)
                    .add_yaxis(
                        series_name=series_names,
                        y_axis=y_data,
                        is_smooth=True,
                        linestyle_opts=opts.LineStyleOpts(
                            width=3,
                            opacity=0.5,
                            curve=1,
                            type_='solid',
                            color=''
    
                        )
    
                    )
                    .set_global_opts(title_opts=opts.TitleOpts(title="Line-smooth"))
                    .render("line_smooth.html")
            )
        def bar1(self):
            bar = (
                Bar()
                    .add_xaxis(Faker.choose())
                    .add_yaxis("商家A", Faker.values(), label_opts=opts.LabelOpts(position="right"))
                    .add_yaxis("商家B", Faker.values(), label_opts=opts.LabelOpts(position="right"))
                    .reversal_axis()
                    .set_global_opts(
                    title_opts=opts.TitleOpts("Timeline-Bar-Reversal (时间: {} 年)".format(i))
                )
            )
    
        # 特殊折线图
        def kline(self):
            kline = (
                Kline()
                    .add_xaxis(xaxis_data=data["times"])
                    .add_yaxis(
                    series_name="",
                    y_axis=data["datas"],
                    itemstyle_opts=opts.ItemStyleOpts(
                        color="#ef232a",
                        color0="#14b143",
                        border_color="#ef232a",
                        border_color0="#14b143",
                    ),
                    markpoint_opts=opts.MarkPointOpts(
                        data=[
                            opts.MarkPointItem(type_="max", name="最大值"),
                            opts.MarkPointItem(type_="min", name="最小值"),
                        ]
                    ),
                    markline_opts=opts.MarkLineOpts(
                        label_opts=opts.LabelOpts(
                            position="middle", color="blue", font_size=15
                        ),
                        data=split_data_part(),
                        symbol=["circle", "none"],
                    ),
                )
                    .set_series_opts(
                    markarea_opts=opts.MarkAreaOpts(is_silent=True, data=split_data_part())
                )
                    .set_global_opts(
                    title_opts=opts.TitleOpts(title="K线周期图表", pos_left="0"),
                    xaxis_opts=opts.AxisOpts(
                        type_="category",
                        is_scale=True,
                        boundary_gap=False,
                        axisline_opts=opts.AxisLineOpts(is_on_zero=False),
                        splitline_opts=opts.SplitLineOpts(is_show=False),
                        split_number=20,
                        min_="dataMin",
                        max_="dataMax",
                    ),
                    yaxis_opts=opts.AxisOpts(
                        is_scale=True, splitline_opts=opts.SplitLineOpts(is_show=True)
                    ),
                    tooltip_opts=opts.TooltipOpts(trigger="axis", axis_pointer_type="line"),
                    datazoom_opts=[
                        opts.DataZoomOpts(
                            is_show=False, type_="inside", xaxis_index=[0, 0], range_end=100
                        ),
                        opts.DataZoomOpts(
                            is_show=True, xaxis_index=[0, 1], pos_top="97%", range_end=100
                        ),
                        opts.DataZoomOpts(is_show=False, xaxis_index=[0, 2], range_end=100),
                    ],
                    # 三个图的 axis 连在一块
                    # axispointer_opts=opts.AxisPointerOpts(
                    #     is_show=True,
                    #     link=[{"xAxisIndex": "all"}],
                    #     label=opts.LabelOpts(background_color="#777"),
                    # ),
                )
            )
    
    
        def timeline(self):
            attr = Faker.choose()
            tl = Timeline()
            for i in range(2015, 2020):
                pie = (
                    Pie()
                        .add(
                        "商家A",
                        [list(z) for z in zip(attr, Faker.values())],
                        rosetype="radius",
                        radius=["30%", "55%"],
                    )
                        .set_global_opts(title_opts=opts.TitleOpts("某商店{}年营业额".format(i)))
                )
                tl.add(pie, "{}年".format(i))
            tl.render("timeline_pie.html")
    
    
    
    
    
    
    if __name__=='__main__':
        start = ''
        end = ''
        #data = pd.DataFrame()
        x_data = [1,2,3,4]
        y_data = [-100,200,30,-50]
        series_names = ''
        title = '涨跌幅'
        subtitle='单位'
        Market().sbar(x_data,y_data,series_names,title,subtitle)
        Market().cbar( x_data, series_names, y_data)
  • 相关阅读:
    sql性能调优的注意项
    mybatis获取刚插入数据的ID
    mysql
    JQuery
    JS
    css
    web前端
    python爬虫
    socket编程
    python基础
  • 原文地址:https://www.cnblogs.com/Iceredtea/p/13551633.html
Copyright © 2020-2023  润新知