• RSA算法的C++string实现(模幂算法和欧几里得算法的使用)后附思路


    void resetNumA(string numAStr);
    //使用string重置numB
    void resetNumB(string numBStr);
    //将数组转换为字符串,用于输出
    string getNumString(int* num);
    //判断两个数字哪个大
    int compare(string numAStr, string numBStr);
    //加法
    string sum(string numAStr, string numBStr);
    //减法
    string sub(string numAStr, string numBStr);
    //乘法
    string mul(string numAStr, string numBStr);
    //
    string div(string numAStr, string numBStr);
    //取余
    string mod(string numAStr, string numBStr);
    //模幂算法
    string getMod(string m, string pow, string n);
    //求2的n次方函数
    string mul_2(int i);
    //求m的n次方
    string mul_m(string m, string n);
    #endif
    #include<iostream>
    #include"operation.h"
    #include<string>
    #include<vector>
    using namespace std;
    
    //结果支持的最大位数
    const static int M = 2000;
    
    
    int numA[M];
    int numB[M];
    
    //使用string重置numA
    void resetNumA(string numAStr)
    {
        memset(numA, 0, M * sizeof(int));
    
        //将字符串的每一位都转换成数字传入数组
        for (int i = 0; i < numAStr.length(); i++)
        {
            numA[i] = numAStr[numAStr.length() - i - 1] - '0';
        }
    }
    
    //使用string重置numB
    void resetNumB(string numBStr)
    {
        memset(numB, 0, M * sizeof(int));
    
        //将字符串的每一位都转换成数字传入数组
        for (int i = 0; i < numBStr.length(); i++)
        {
            numB[i] = numBStr[numBStr.length() - i - 1] - '0';
        }
    }
    
    
    //将数组转换为字符串,用于输出
    string getNumString(int* num)
    {
        string numString;
        bool isBegin = false;
        for (int i = M - 1; i >= 0; i--)
        {
            if (num[i] != 0)
            {
                isBegin = true;
            }
    
            if (isBegin)
            {
                numString += num[i] + '0';
            }
        }
        return numString;
    }
    
    //判断两个数字哪个大
    int compare(string numAStr, string numBStr)
    {
        int i = 0;
        int la = 0;
        while (numAStr[i] == '0') {
            la++;
            i++;
        }
        i = 0;
        int lb = 0;
        while (numBStr[i] == '0') {
            lb++;
            i++;
        }
        string a(numAStr.substr(la, numAStr.length()));
        string b(numBStr.substr(lb, numBStr.length()));
        if (a.length() > b.length())
        {
            return 1;
        }
        else if (a.length() < b.length())
        {
            return -1;
        }
        else
        {
            for (int i = 0; i < a.length(); i++)
            {
                if (a[i]>b[i])
                {
                    return 1;
                }
    
                if (a[i]<b[i])
                {
                    return -1;
                }
            }
            return 0;
        }
    }
    
    //加法
    string sum(string numAStr, string numBStr)
    {
        resetNumA(numAStr);
        resetNumB(numBStr);
    
        for (int i = 0; i < M; i++)
        {
            //结果保存在numA中
            numA[i] += numB[i];
    
            //数字大于9则进位
            if (numA[i]>9)
            {
                numA[i] -= 10;
                numA[i + 1]++;
            }
        }
    
        return getNumString(numA);
    }
    
    //减法
    string sub(string numAStr, string numBStr)
    {
        bool isNegative = false;
    
        //如果numA比numB小
        //则结果为负数
        //调换位置进行计算
        if (compare(numAStr, numBStr) == -1)
        {
            isNegative = true;
            string temp = numAStr;
            numAStr = numBStr;
            numBStr = temp;
        }
        else if (compare(numAStr, numBStr) == 0)
        {
            return "0";
        }
    
        resetNumA(numAStr);
        resetNumB(numBStr);
    
    
    
        for (int i = 0; i < M; i++)
        {
            //减数小于被减数就借位
            if (numA[i]<numB[i])
            {
                numA[i] = numA[i] + 10 - numB[i];
                numA[i + 1]--;
            }
            else
            {
                numA[i] -= numB[i];
            }
        }
        if (isNegative)
        {
            return "-" + getNumString(numA);
        }
        else
        {
            return getNumString(numA);
        }
    
    }
    
    //乘法
    
    string mul(string numAStr, string numBStr)
    {
        resetNumA(numAStr);
        resetNumB(numBStr);
    
        vector<string> nums;
        for (int i = 0; i < numBStr.length(); i++)
        {
            //初始化一个临时数据来保存被乘数与乘数的某一位相乘的结果
            int temp[M];
            memset(temp, 0, M * sizeof(int));
    
    
            for (int j = i; j < numAStr.length() + i; j++)
            {
                temp[j] += numA[j - i] * numB[i] % 10;
    
                temp[j + 1] = numA[j - i] * numB[i] / 10;
    
                //如果大于9,那么就做进位处理
                if (temp[j]>9)
                {
                    temp[j] -= 10;
                    temp[j + 1]++;
                }
            }
            nums.push_back(getNumString(temp));
        }
    
        //每位相乘的结果再用加法加起来
        string result = nums[0];
        for (int i = 1; i < nums.size(); i++)
        {
            result = sum(result, nums[i]);
        }
    
        return result;
    }
    
    
    
    //除,结果精确到个位
    string div(string numAStr, string numBStr)
    {
        resetNumA(numAStr);
        resetNumB(numBStr);
    
        string result;
        string left;
    
        if (compare(numAStr, numBStr) == -1)
        {
            return "0";
        }
    
        //标记第一个不为0的位数的出现
        bool flag = false;
        for (int i = 0; i < numAStr.length(); i++)
        {
            left += numAStr[i];
    
            //余数比除数大
            if (compare(left, numBStr) == 1)
            {
                flag = true;
    
                int count = 1;
                string temp = numBStr;
    
                while (true)
                {
                    //每循环一次加上一个余数
                    temp = sum(temp, numBStr);
    
                    //余数仍然大于除数,继续累加
                    if (compare(left, temp) == 1)
                    {
                        count++;
                    }
                    //余数小于除数
                    //可以计算结果
                    else if (compare(left, temp) == -1)
                    {
                        result += count + '0';
                        left = sub(left, sub(temp, numBStr));
                        break;
                    }
                    //此时余数刚好是除数的倍数
                    else if (compare(left, temp) == 0)
                    {
                        count++;
                        result += count + '0';
                        left = "";
                        break;
                    }
                }
            }
            //刚好除尽
            else if (compare(left, numBStr) == 0)
            {
                flag = true;
                result += "1";
                left = "";
            }
            //余数比除数小,跳到下一位
            else if (flag)
            {
                result += "0";
            }
    
    
        }
    
        return result;
    }
    //取模
    string mod(string numAStr, string numBStr)
    {
        
        string result = "0";
    
        if (compare(numAStr, numBStr) == -1)
        {
            return numAStr;
        }
        else if (compare(numAStr, numBStr) == 0) {
            return result;
        }
        else {
            string d = div(numAStr, numBStr);
            string x = mul(numBStr, d);
            result = sub(numAStr, x);
            return result;
        }
    }
    
    //加密解密模幂算法
    string getMod(string m, string pow, string n)
    {
        string temp;
        while (compare(pow,"1") == 1) {
            if(mod(pow,"2")=="1")
                temp = temp + "1";
            else
                temp = temp + "0";
            pow = div(pow,"2");
        }
        temp = temp + "1";
        int length = temp.length();
        string T[M];
        string M = "1";
        T[0] = mod(m, n);
        for (int i = 1; i < length; i++) {
            T[i] = mod(mul(T[i-1],T[i-1]),n);
        }
        for (int i = 0; i < length; i++) {
            if (temp[i] == '1') {
                M = mul(M, T[i]);
            }
        }
        string result = mod(M, n);
        return result;
    }
    
    //求2的n次方函数
    string mul_2(int i) {
        string result = "2";
        for (int j = 1; j < i; j++) {
            result = mul(result, "2");
        }
        if (i == 0)
            return "1";
        else
            return result;
    }
    
    //求m的t次方函数
    string mul_m(string m,string t) {
        string result = m;
        string j;
        for ( j = "1"; compare(j, t) == -1; j = sum(j, "1")) {
            result = mul(result, m);
        }
            return result;
    }
    #include<iostream>
    #include"operation.h"
    using namespace std;
    
    
    int main() {
        string char_number_p;
        string char_number_q;
    
        string temp[3000][4];
        //p=17,q=11
        //p=17,q=19
        //p=41,q=43
        //67,71
        //797 809
        //49993 49999
        //116747 110221
        //1000017077
        //141008192341187
        char_number_p="100010001707701";
        char_number_q="141008192341187";
    
        string n = mul(char_number_p, char_number_q); 
        string tmp1 = "1";
        string On = mul(sub(char_number_p, tmp1),sub(char_number_q, tmp1));
        
        string e = "65537";
    
        //拓展欧几里得算法
        temp[0][0] = e;
        temp[0][1] = "";
        temp[0][2] = On;
        temp[0][3] = "";
        int i = 1;
        do {
            temp[i][0] = temp[i - 1][0];
            temp[i][1] = "";
            temp[i][2] = temp[i - 1][2];
            temp[i][3] = "";
            if (compare(temp[i][0], temp[i][2]) == 1) {
                temp[i][0] = mod(temp[i][0], temp[i][2]);
            }
            else {
                temp[i][2] = mod(temp[i][2], temp[i][0]);
            }
            i++;
        } while (compare(temp[i - 1][0], "1") == 1);
        int value = i - 1;
        temp[value][1] = "1";
        value--;
        while (value >= 0) {
            if (temp[value + 1][1] != "")
                temp[value][3] = div(sub(mul(temp[value][0], temp[value + 1][1]), "1"), temp[value][2]);
            else if (temp[value + 1][3] != "")
                temp[value][1] = div(sum(mul(temp[value][2], temp[value + 1][3]), "1"), temp[value][0]);
            value--;
        }
        string d = temp[0][1];
    
        cout << "e:" << e << endl;
        cout << "p*q:" << n << endl;
        cout << "O(n):" << On << endl;
        cout << "d:" << d << endl;
        cout << "密钥{ " << e << " , " << n << " }" << endl;
        cout << "公钥{ " << d << " , " << char_number_p <<" , "<< char_number_q << " }" << endl;
    
        string miwen;
        cout << "请输入密文(暂小于10的29次方)" << endl;
        cin >> miwen;
        cout << "密文:" << miwen << endl;
        string C1 = getMod(miwen, e, n);
        cout << "加密后的明文:" << C1 << endl;
        string M1 = getMod(C1, d, n);
        cout << "解密后的密文:" << M1 << endl;
    
        cout << "请输入密文(暂小于10的29次方)" << endl;
        cin >> miwen;
        string C2 = getMod(miwen, e, n);
        cout << "加密后的明文:" << C2 << endl;
        string M2 = getMod(C2, d, n);
        cout << "解密后的密文:" << M2 << endl;
    
        cout << "请输入密文(暂小于10的29次方)" << endl;
        cin >> miwen;
        string C3 = getMod(miwen, e, n);
        cout << "加密后的明文:" << C3 << endl;
        string M3 = getMod(C3, d, n);
        cout << "解密后的密文:" << M3 << endl;
        
        system("pause");
        return 0;
    }

    以上为测试实现的代码。

    思路:先实现string类型的加减乘除的重写,以及用到的其他的操作函数,比较,取模,加解密函数,以及其他的m的n次方的操作。

    然后在主函数里面嵌入欧几里得算法,调用求得d,之后就是简单的调用加解密函数

    pq的值也是测试得到的

    这是运行截图:

    //拓展欧几里得算法
        temp[0][0] = e;
        temp[0][1] = "";
        temp[0][2] = On;
        temp[0][3] = "";
        int i = 1;
        do {
            temp[i][0] = temp[i - 1][0];
            temp[i][1] = "";
            temp[i][2] = temp[i - 1][2];
            temp[i][3] = "";
            if (compare(temp[i][0], temp[i][2]) == 1) {
                temp[i][0] = mod(temp[i][0], temp[i][2]);
            }
            else {
                temp[i][2] = mod(temp[i][2], temp[i][0]);
            }
            i++;
        } while (compare(temp[i - 1][0], "1") == 1);
        int value = i - 1;
        temp[value][1] = "1";
        value--;
        while (value >= 0) {
            if (temp[value + 1][1] != "")
                temp[value][3] = div(sub(mul(temp[value][0], temp[value + 1][1]), "1"), temp[value][2]);
            else if (temp[value + 1][3] != "")
                temp[value][1] = div(sum(mul(temp[value][2], temp[value + 1][3]), "1"), temp[value][0]);
            value--;
        }
        string d = temp[0][1];
    这部分拓展的欧几里得算法也可以单独使用,这里是用空间换取的时间效率。
  • 相关阅读:
    BootStrap 智能表单系列 五 表单依赖插件处理
    BootStrap 智能表单系列 四 表单布局介绍
    BootStrap 智能表单系列 三 分块表单配置的介绍
    LinQ.OrderBy 多个字段排序
    ABP.NET CORE 遇到的小问题
    vs2017断点无效 当前不会命中断点 已设置断点单还未绑定
    DateTime 取年月日;字符串截取
    C# DateTime 多个时间段循环相加;两个时间段求差值
    ABP.Net Core 小白使用教程 附件:ABP.NET中文文档
    ASP.NET MVC+Easyui 后台管理系统的图片上传
  • 原文地址:https://www.cnblogs.com/ITyunbook/p/10164558.html
Copyright © 2020-2023  润新知