• 邻接矩阵c源码(构造邻接矩阵,深度优先遍历,广度优先遍历,最小生成树prim,kruskal算法)


    matrix.c

    #include <stdio.h>
    #include <stdlib.h>
    #include <stdbool.h>
    #include <limits.h>
    
    #include "aqueue.h"
    
    #define MAX_VALUE INT_MAX
    #define MAX_NUM 100
    
    typedef char node_type;
    
    typedef struct matrix
    {
        node_type vertex[MAX_NUM];//节点信息
        int arcs[MAX_NUM][MAX_NUM];//矩阵
        int vertexs, brim;//节点数,边数
    } Graph;
    
    void g_create(Graph * graph)
    {
        int num;
        int i, j, k;
        char c;
    
        printf("输入节点个数:");
        scanf("%d", &graph->vertexs);
        getchar();//接受回车键
    
        printf("输入节点信息:");
        for ( i = 0; i < graph->vertexs; i++ )
        {
            scanf("%c", &graph->vertex[i]);
            getchar();
        }
    
        for ( i = 0; i < graph->vertexs; i++ )//初始化矩阵
            for ( j = 0; j < graph->vertexs; j++ )
                graph->arcs[i][j] = MAX_VALUE;
        graph->brim = 0;//初始化边数
    
        // i 代表行数, j 是用来循环的, k 代表列数
        for ( i = 0; i < graph->vertexs; i++ )
        {
            printf("输入与%c节点相邻的节点与权值,输入#号键结束
    ", graph->vertex[i]);
            for ( j = 0; j < graph->vertexs; j++ )
            {
                scanf("%c", &c);
                if ( c == '#' )
                {
                    getchar();
                    break;
                }
                scanf("%d", &num);
                for ( k = 0; k < graph->vertexs; k++ )
                {
                    if ( graph->vertex[k] != c )
                        continue;
                    graph->arcs[i][k] = num;
                    graph->brim++;
                }
                getchar();
            }
        }
        graph->brim /= 2;
    }
    
    void g_printMatrix(Graph * graph)//打印矩阵状态
    {
        int i, j;
    
        printf("brim = %d
    ", graph->brim);
        for ( i = 0; i < graph->vertexs; i++ )
        {
            for ( j = 0; j < graph->vertexs; j++ )
            {
                printf("%-10d ", graph->arcs[i][j]);
            }
            printf("
    ");
        }
    }
    
    //深度优先遍历
    static void dfs_graph(Graph * graph, bool visited[], const int i);
    void g_depth_first_search(Graph * graph)
    {
        bool visited[graph->vertexs];
        int i;
        for ( i = 0; i < graph->vertexs; i++ )
            visited[i] = false;
        visited[0] = true;
        dfs_graph(graph, visited, 0);
        printf("
    ");
    }
    
    static void dfs_graph(Graph * graph, bool visited[], const int i)
    {
        int j;
        printf("%c	", graph->vertex[i]);
        for ( j = 0; j < graph->vertexs; j++ )//依次检查矩阵
        {
            if ( graph->arcs[i][j] != MAX_VALUE && !visited[j] )//i 代表矩阵的行, j 代表矩阵的列
            {
                visited[j] = true;
                dfs_graph(graph, visited, j);
            }
        }
    }
    
    //广度优先遍历
    void g_breadth_first_search(Graph * graph)
    {
        Queue queue;//队列存储的是节点数组的下标(int)
        bool visited[graph->vertexs];
        int i, pos;
    
        q_init(&queue);
        for ( i = 0; i < graph->vertexs; i++ )
            visited[i] = false;
        
        visited[0] = true;
        q_push(&queue, 0);
        while ( !q_empty(&queue) )
        {
            pos = q_front(&queue);
            printf("%c	", graph->vertex[pos]);
            for ( i = 0; i < graph->vertexs; i++ )//把队头元素的邻接点入队
            {
                if ( !visited[i] && graph->arcs[pos][i] != MAX_VALUE )
                {
                    visited[i] = true;
                    q_push(&queue, i);
                }
            }
            q_pop(&queue);
        }
        printf("
    ");
    }
    
    //最小生成树prim算法
    static void init_prim(Graph * graph, Graph * prim_tree);
    void Prim(Graph * graph, Graph * prim_tree)
    {
        bool visited[graph->vertexs];
        int i, j, k, h;
        int power, power_j, power_k;
    
        for ( i = 0; i < graph->vertexs; i++ )
            visited[i] = false;
        init_prim(graph, prim_tree);
    
        visited[0] = true;
        for ( i = 0; i < graph->vertexs; i++ )
        {
            power = MAX_VALUE;
            for ( j = 0; j < graph->vertexs; j++ )
            {
                if ( visited[j] )
                {
                    for ( k = 0; k < graph->vertexs; k++ )
                    {
                        if ( power > graph->arcs[j][k] && !visited[k] )
                        {
                            power = graph->arcs[j][k];
                            power_j = j;
                            power_k = k;
                        }
                    }
                }
            }
            //min power
            if ( !visited[power_k] )
            {
                visited[power_k] = true;
                prim_tree->arcs[power_j][power_k] = power;
            }
        }
    }
    
    static void init_prim(Graph * graph, Graph * prim_tree)
    {
        int i, j;
    
        prim_tree->vertexs = graph->vertexs;
        for ( i = 0; i < prim_tree->vertexs; i++ )//初始化节点
            prim_tree->vertex[i] = graph->vertex[i];
        for ( i = 0 ; i < prim_tree->vertexs; i++ )//初始化矩阵
        {
            for ( j = 0; j < prim_tree->vertexs; j++ )
            {
                prim_tree->arcs[i][j] = MAX_VALUE;
            }
        }
    }
    
    //最小生成树kruskal算法
    typedef struct
    {
        int head;//边的始点下标
        int tail;//边的终点下标
        int power;//边的权值
    } Edge;
    
    static void init_kruskal(Graph * graph, Graph * kruskal_tree);
    static void my_sort(Edge * arr, int size);
    void kruskal(Graph * graph, Graph * kruskal_tree)
    {
        int visited[graph->vertexs];
        Edge edge[graph->brim];
        int i, j, k;
        int v1, v2, vs1, vs2;
    
        for ( i = 0; i < graph->vertexs; i++ )
            visited[i] = i;
    
        k = 0;
        for ( i = 0; i < graph->vertexs; i++ )
        {
            for ( j = i + 1; j < graph->vertexs; j++ )
            {
                if ( graph->arcs[i][j] != MAX_VALUE )
                {
                    edge[k].head = i;
                    edge[k].tail = j;
                    edge[k].power = graph->arcs[i][j];
                    k++;
                }
            }
        }
    
        init_kruskal(graph, kruskal_tree);
        my_sort(edge, graph->brim);
    
        for ( i = 0; i < graph->brim; i++ )
        {
            v1 = edge[i].head;
            v2 = edge[i].tail;
            vs1 = visited[v1];
            vs2 = visited[v2];
            if ( vs1  != vs2 )
            {
                kruskal_tree->arcs[v1][v2] = graph->arcs[v1][v2];
                for ( j = 0; j < graph->vertexs; j++ )
                {
                    if ( visited[j] == vs2 )
                        visited[j] = vs1;
                }
            }
        }
    }
    
    static void init_kruskal(Graph * graph, Graph * kruskal_tree)
    {
        int i, j;
    
        kruskal_tree->vertexs = graph->vertexs;
        kruskal_tree->brim = graph->brim;
    
        for ( i = 0; i < graph->vertexs; i++ )
            kruskal_tree->vertex[i] = graph->vertex[i];
    
        for ( i = 0; i < graph->vertexs; i++ )
            for ( j = 0; j < graph->vertexs; j++ )
                kruskal_tree->arcs[i][j] = MAX_VALUE;
    }
    
    static void my_sort(Edge * arr, int size)
    {
        int i, j;
        Edge tmp;
    
        for ( i = 0; i < size - 1; i++ )
        {
            for ( j = i + 1; j < size; j++ )
            {
                if ( arr[i].power > arr[j].power )
                {
                    tmp.head = arr[i].head;
                    tmp.tail = arr[i].tail;
                    tmp.power = arr[i].power;
    
                    arr[i].head = arr[j].head;
                    arr[i].tail = arr[j].tail;
                    arr[i].power = arr[j].power;
    
                    arr[j].head = tmp.head;
                    arr[j].tail = tmp.tail;
                    arr[j].power = tmp.power;
                }
            }
        }
    }
    
    int main(void)
    {
        Graph graph;
        Graph prim_tree;
        Graph kruskal_tree;
    
        g_create(&graph);
        g_printMatrix(&graph);
    //    printf("
    ");
    //    g_depth_first_search(&graph);
    //    g_breadth_first_search(&graph);
    //
    //    Prim(&graph, &prim_tree);
    //    g_printMatrix(&prim_tree);
    //    g_depth_first_search(&prim_tree);
    //    g_breadth_first_search(&prim_tree);
    
        kruskal(&graph, &kruskal_tree);
        g_printMatrix(&kruskal_tree);
    
        return 0;
    }

    aqueue.h

    #ifndef _QUEUE_H
    #define _QUEUE_H
    
    #define MAXSIZE 10
    
    typedef struct queue
    {
        int * arr;
        int front;
        int rear;
    } Queue;
    
    void q_init(Queue * queue);//初始化
    void q_push(Queue * queue, const int data);//入队
    void q_pop(Queue * queue);//出队
    bool q_empty(Queue * queue);//为空
    bool q_full(Queue * queue);//为满
    int q_size(Queue * queue);//队大小
    int q_front(Queue * queue);//队头元素
    int q_back(Queue * queue);//队尾元素
    void q_destroy(Queue * queue);//销毁
    
    #endif //_QUEUE_h

    aqueue.c

    #include <stdio.h>
    #include <stdlib.h>
    #include <assert.h>
    #include <stdbool.h>
    
    #include "aqueue.h"
    
    void q_init(Queue * queue)
    {
        queue->arr = (int *)malloc( sizeof(int) * MAXSIZE );//初始化数组
        assert(queue->arr != NULL);
        queue->front = 0;
        queue->rear = 0;
    }
    
    void q_push(Queue * queue, const int data)
    {
        if ( q_full(queue) )
            return;
        queue->arr[queue->rear++] = data;//入队,队尾+1
        queue->rear = queue->rear % MAXSIZE;//如果队尾
    }
    
    void q_pop(Queue * queue)
    {
        if ( q_empty(queue) )
            return;
        queue->front = ++queue->front % MAXSIZE;//front+1,对MAXSIZE取余
    }
    
    bool q_empty(Queue * queue)
    {
        return queue->front == queue->rear;
    }
    
    bool q_full(Queue * queue)
    {
        return queue->front == (queue->rear + 1) % MAXSIZE;
    }
    
    int q_size(Queue * queue)
    {
        return (queue->rear - queue->front) % MAXSIZE;
    }
    
    int q_front(Queue * queue)
    {
        assert( !q_empty(queue) );
        return queue->arr[queue->front];
    }
    
    int q_back(Queue * queue)
    {
        assert( !q_empty(queue) );
        return queue->arr[queue->rear - 1];
    }
    
    void q_destroy(Queue * queue)
    {
        free(queue->arr);
    }
  • 相关阅读:
    Python 获取学校图书馆OAPC账号对应的身份证号码
    利用Python获取ZOJ所有题目的名字
    android wifi Beacon帧解析
    比较skb_clone和skb_cpoy
    查找链表的中间节点
    linux wifi wpa_cli及hostapd_cli命令总结
    android wifi I2C总线
    android wifi P2P CONNECT, INVITE和JOIN流程选择
    android wifi ANR问题分析总结
    android 编译代码注意事项
  • 原文地址:https://www.cnblogs.com/ITgaozy/p/5200637.html
Copyright © 2020-2023  润新知