• python数据分析学习(3)pandas基本功能一


      下面介绍pandas常见的基本功能,和python的基本数据类型进行比较可以看到pandas在操作大型数据集中的优势。

    1.重建索引

    (1)函数:reindex

    (2)作用:创建一个符合新索引的新对象。

    (3)内容:

      Series调用reindex方法时,会将数组按照新的索引进行排列,如果之前并不存在,则会引入缺失值NaN。

      DataFrame调用reindex方法时,会改变行和列索引。只传入一个序列时,行会重建索引;传入columns关键字参数时,列会重建索引。

    (4)重要参数:ffill

      作用:重建索引时插值,按顺序把没有数据的标签补充数据。

    (5)实例

    2.轴向上删除条目

    (1)函数:drop

    (2)作用:在轴向上删除一个或更多的条目。

    (3)内容:

      返回一个含有指示值或轴向上删除值的新对象。

      Series调用drop方法时,把字符串或者字符串序列列表当作参数传入并返回对象。

      DataFrame调用drop方法时,传入字符串序列列表会根据行标签删除值(轴0),传入axis=1或者axis='columns'会根据列标签删除值。

    (4)重要参数:inplace

      作用:清除被删除的数据,并返回删除后的数据。

    (5)实例

    3.索引,选择与过滤

    (1)索引
      Series的索引可以不只是整数,也可以是小数,字符串,切片,字符串索引列表,布尔值索引。还可以是字符串双向切片。
      DataFrame的索引可以是字符串,字符串索引列表选择列,切片和布尔值索引选择行。

  • 相关阅读:
    数据库表的主外键
    数据库条件查询及关系搭建
    MySQL数据库的基本认识与操作
    MySQL5.7安装详解及常见安装问题解决
    数据库介绍
    Sensor图像调试
    1.线性表
    发展建议
    typedef 与 #define 的区别
    音频处理
  • 原文地址:https://www.cnblogs.com/ITXiaoAng/p/12392342.html
Copyright © 2020-2023  润新知