@
这几天爬取了course动态网页的课程信息,有关数据分析,机器学习,还有概率论和数理统计课程,这里数据过多,只对数据分析的模块进行了详细爬取。为之后的数据分析以及机器学习情感处理进行数据获取,下面直接上代码和截图:
1.大模块页面
页面如下:
爬取代码:
# encoding: utf-8
from selenium import webdriver
import csv
class GetModel():
'''
类功能介绍:获取每页每个大模块的类型,标题,url
类成员变量:browser对象,每页的url
类成员函数:初始化函数__init__,获取每个大模块信息的函数getEveryModel,写入csv的函数saveToCsv
'''
def __init__(self,url):
self.__browser = webdriver.Chrome()
self.__page_url = url
def saveToCsv(self,this_list):
with open("model.csv", "a", newline='', encoding='utf-8') as f:
writer = csv.writer(f, delimiter=',')
writer.writerow(this_list)
def getEveryModel(self):
# 隐式等待
self.__browser.implicitly_wait(30)
self.__browser.get(self.__page_url)
model_type = self.__browser.find_elements_by_css_selector(".product-type-row.horizontal-box")
model_title = self.__browser.find_elements_by_css_selector(".color-primary-text.card-title.headline-1-text")
model_url = self.__browser.find_elements_by_css_selector(".rc-DesktopSearchCard.anchor-wrapper.browse-result-card")
for i in range(len(model_type)):
every_model = []
every_model.append(model_type[i].text)
every_model.append(model_title[i].text)
every_model.append(model_url[i].get_attribute('href'))
self.saveToCsv(every_model)
def closeUrl(self):
self.__browser.close()
结果如下:
2.每个大模块中小模块的简单信息
页面如下:
查看全部的信息要先模拟点击查看所有页面:
代码如下:
# encoding: utf-8
from selenium import webdriver
import csv
import time
class GetCourse():
'''
类功能介绍:获取每个大模块的小课程的信息
类成员变量:browser对象,每个大模块的url,大模块类别,大模块标题
类成员函数:初始化函数__init__,获取每个小课程信息的函数getEveryCourse,写入csv的函数saveToCsv
'''
def __init__(self,url,model_type,model_title):
self.__browser = webdriver.Chrome()
self.__page_url = url
self.__model_type = model_type
self.__model_title = model_title
def saveToCsv(self,this_list):
with open("course2.csv", "a", newline='', encoding='utf-8') as f:
writer = csv.writer(f, delimiter=',')
writer.writerow(this_list)
def getEveryCourse(self):
self.__browser.get(self.__page_url)
# 隐式等待
self.__browser.implicitly_wait(15)
try:
button = self.__browser.find_element_by_css_selector(".Button_1w8tm98-o_O-default_9vdknu-o_O-md_1jvotax.m-t-1.d-block.m-x-auto")
button.click()
except:
print("没有多余项")
finally:
self.__browser.implicitly_wait(20)
course_title = self.__browser.find_elements_by_css_selector(".H2_1pmnvep-o_O-weightBold_uvlhiv-o_O-bold_1byw3y2.m-b-2")
# course_url = self.__browser.find_elements_by_css_selector(".Col_i9j08c-o_O-xsCol12_1m1ceo5-o_O-mdCol10_1eb21lj-o_O-lgCol10_ra5osh.p-b-3.border-bottom a")
course_score = self.__browser.find_elements_by_css_selector(".H4_1k76nzj-o_O-weightBold_uvlhiv-o_O-bold_1byw3y2.m-l-1s")
commet_num = self.__browser.find_elements_by_css_selector(".P_gjs17i-o_O-weightNormal_s9jwp5-o_O-fontBody_56f0wi.m-r-1s")
comment_number = self.__browser.find_elements_by_css_selector(".reviewsCount")
for i in range(len(course_title)):
every_course = []
every_course.append(course_title[i].text)
every_course.append(course_score[i].text[0:4])
every_course.append(commet_num[i].text)
every_course.append(comment_number[i].text)
every_course.append(self.__model_type)
every_course.append(self.__model_title)
self.saveToCsv(every_course)
def closeUrl(self):
self.__browser.close()
结果如下:
3.每个小课程的详细信息
页面如下:
代码如下:
# encoding: utf-8
from selenium import webdriver
import csv
class GetDetail():
'''
类功能介绍:获取每个课程的详细信息
类成员变量:browser对象,每个课程的之前已爬取的信息
类成员函数:初始化函数__init__,获取每个课程详细信息的函数getEveryDetail,写入csv的函数saveToCsv
'''
def __init__(self,title,url,score,mark_people_num,comment_people_num,model_type,model_title):
self.__browser = webdriver.Chrome()
self.__page_title = title
self.__page_url = url
self.__score = score
self.__mark_people_num = mark_people_num
self.__comment_people_num = comment_people_num
self.__model_type = model_type
self.__model_title = model_title
def saveToCsv(self,this_list):
with open("course_detail.csv", "a", newline='', encoding='utf-8') as f:
writer = csv.writer(f, delimiter=',')
writer.writerow(this_list)
def getEveryDetail(self):
self.__browser.get(self.__page_url)
# 隐式等待
self.__browser.implicitly_wait(20)
course_registered_num = self.__browser.find_element_by_css_selector(".enrolledLargeFont_16g5ucx span strong span").text
course_provide = self.__browser.find_element_by_css_selector(".partnerBanner_np2ice-o_O-Box_120drhm-o_O-displayflex_poyjc div img").get_attribute("title")
course_information_view_num = self.__browser.find_element_by_css_selector(".viewsWithTextOnly_1fs65xr span span").text
course_information = self.__browser.find_element_by_css_selector(".content-inner").text
what_we_learned = self.__browser.find_elements_by_css_selector(".Col_i9j08c-o_O-xsCol12_1m1ceo5-o_O-mdCol6_1rbv01c.m-b-1")
what_we_learned_result = ''
for i in range(len(what_we_learned)):
what_we_learned_result += what_we_learned[i].text
acquired_skills = self.__browser.find_elements_by_css_selector(".Pill_56iw91.m-r-1s.m-b-1s")
acquired_skills_result = ''
for i in range(len(acquired_skills)):
acquired_skills_result += acquired_skills[i].text
acquired_skills_result += ' '
course_evaluation = self.__browser.find_elements_by_css_selector(".quote.caption-text")
course_evaluation_result = ''
for i in range(len(course_evaluation)):
course_evaluation_result += course_evaluation[i].text
course_evaluation_result += ' '
all_one = self.__browser.find_elements_by_css_selector(".H4_1k76nzj-o_O-weightBold_uvlhiv-o_O-bold_1byw3y2.m-b-0")
all_two = self.__browser.find_elements_by_css_selector(".font-sm.text-secondary")
finish_time = all_one[3].text
advice_time = all_two[2].text
course_language = all_one[4].text
subtitle_language = all_two[3].text
course_lecturer = self.__browser.find_elements_by_css_selector(".link-no-style")
course_lecturer_result = ''
for i in range(len(course_lecturer)):
course_evaluation += course_lecturer[i].text
course_lecturer_result += ' '
every_course_detail = []
every_course_detail.append(self.__page_title)
every_course_detail.append(self.__page_url)
every_course_detail.append(self.__score)
every_course_detail.append(self.__mark_people_num)
every_course_detail.append(self.__comment_people_num)
every_course_detail.append(self.__model_type)
every_course_detail.append(self.__model_title)
every_course_detail.append(course_registered_num)
every_course_detail.append(course_provide)
every_course_detail.append(course_information_view_num)
every_course_detail.append(course_information)
every_course_detail.append(what_we_learned_result)
every_course_detail.append(acquired_skills_result)
every_course_detail.append(course_evaluation_result)
every_course_detail.append(finish_time)
every_course_detail.append(advice_time)
every_course_detail.append(course_language)
every_course_detail.append(subtitle_language)
self.saveToCsv(every_course_detail)
def closeUrl(self):
self.__browser.close()
结果如下:
4.爬取所有评论
我把所有的小课程爬取下来,并进行了排名,取前六个如下:
然后对这六个课程进行了所有评论的爬取。代码如下:
# encoding: utf-8
from selenium import webdriver
import csv
import pandas as pd
import re
import os.path
def saveToCsv(url_title,this_list):
with open("{0}_review.csv".format(url_title), "a", newline='', encoding='utf-8') as f:
writer = csv.writer(f, delimiter=',')
writer.writerow(this_list)
def get_review(url_title,i):
'''
:param url_title : 课程标题
'''
try:
url = 'https://www.coursera.org/learn/' + url_title + '/reviews'+ '?page=' + str(i)
browser = webdriver.Chrome()
browser.get(url)
# 隐式等待
browser.implicitly_wait(20)
every_view = browser.find_elements_by_css_selector(".Row_nvwp6p.review.review-page-review.m-b-2")
n = 1
for i in every_view:
s = i.find_elements_by_css_selector(".StarRating_1qk9an0-o_O-nonEditable_1ko0lno label")
# 评星
evaluation_star = 0
for j in s:
if j.text == 'Filled Star':
evaluation_star = evaluation_star + 1
elif j.text == 'Half Faded Star':
evaluation_star = evaluation_star + 0.5
# 作者和时间
author = i.find_element_by_css_selector(".reviewerName.p-x-1s.m-b-0.text-secondary.font-xs").text[4:]
time = i.find_element_by_css_selector(".dateOfReview.p-x-1s.m-b-0.text-secondary.font-xs").text
# 评论
reviewTextAll = i.find_elements_by_css_selector(".reviewText div div p")
ss = []
for j in reviewTextAll:
ss.append(j.text)
reviewText = '@@'.join(ss)
# 点赞数
zan = i.find_element_by_css_selector(".Col_i9j08c-o_O-mdCol4_cuxg7k.e2e-helpful-button-col").text
if zan == '这些很有用:':
like_num = 0
else:
number = re.findall(r"d+.?d*",zan)
like_num = int(number[0])
list_data = []
list_data.append(evaluation_star);list_data.append(author);list_data.append(time);list_data.append(reviewText);list_data.append(like_num)
saveToCsv(url_title, list_data)
n = n + 1
browser.close()
except:
print("出错,继续获取")
get_review(url_title, i)
def get_result(url_title,page_num):
# 控制页数
for i in range(1,page_num+1):
try:
get_review(url_title,i) # 爬取第i页的内容
print("*********课程{course}的第{num}页爬取完毕".format(course=url_title, num=i))
except Exception as ex:
print("*********课程{course}的第{num}页爬取出错-{ex}".format(course = url_title,num = i,ex=ex))
def chucuo(k,v):
file_name = "{0}_review.csv".format(k)
# 文件标题
csv_head = ['evaluation_star', 'author', 'time', 'reviewText', 'like_num']
# 写入文件标题
with open(file_name, "a", newline='', encoding='utf-8') as f:
file_empty = os.stat(file_name).st_size == 0
writer = csv.writer(f, delimiter=',')
if file_empty: # 防止因程序重复运行而写入重复的标题
writer.writerow(csv_head)
get_result(k, v)
def main():
url_title = {'data-scientists-tools':165,'what-is-datascience':136,'r-programming':124,'python-data-analysis':119,'open-source-tools-for-data-science':60,'python-for-applied-data-science-ai':54}
for k,v in url_title.items():
chucuo(k, v)
if __name__=='__main__':
main()
结果如下:
对比原网页如下:
注:多段评论用@@隔开,如下: