• python数据可视化--matplotlib用户手册入门:pyplot画图


    参考matplotlib官方指南:

    https://matplotlib.org/tutorials/introductory/pyplot.html#sphx-glr-tutorials-introductory-pyplot-py

    pyplot是常用的画图模块,功能非常强大,下面就来见识下它的能力吧

    1.快速画出常见图形

    import matplotlib.ptplot as plt
    import numpy as np
    #x = np.arange(10)
    
    x = np.linspace(0,2,100)
    plt.plot(x,x,label = 'liner')
    plt.plot(x,x**2,label = 'quadratic')
    plt.plot(x,x**3,label = 'cubic')
    plt.xlabel('x label')
    plt.ylabel('y label')
    plt.title('Simple Plot')
    plt.legend()
    plt.show()

    import matplotlib.pyplot as plt
    import numpy as np
    x = np.arange(0,10,0.2)
    y = np.cos(x)
    fig =plt.figure()
    ax = fig.add_subplot(111)
    ax.plot(x,y)
    plt.show()
    
    
    import matplotlib.pyplot as plt
    import numpy as np
    x = np.arange(0,10,0.2)
    y = np.cos(x)
    fig =plt.figure()
    ax2 = fig.add_subplot(2,2,2)
    ax2.plot(x,y)
    plt.show()

    import matplotlib.pyplot as plt
    import numpy as np
    t = np.arange(0,5,0.2)
    plt.plot(t,t,'r_',t,t**2,'bs',t,t**3,'g^')
    plt.show()

     

    2.使用关键字字符串作图

    import matplotlib.pyplot as plt
    import numpy as np
    data = {
        'a':np.arange(50),
        'c':np.random.randint(0,50,50),
        'd':np.random.randn(50)
    }
    data['b'] = data['a'] + 10*np.random.randn(50)
    data['d'] = np.abs(data['d'])*100
    
    # x坐标 数组a,y坐标 数组b,颜色c 数组c 大小s数组d
    plt.scatter('a','b',c = 'c',s = 'd',data= data)
    plt.xlabel('entry a')
    plt.ylabel('entry b')
    plt.show()

     3.使用类变量画图

    import matplotlib.pyplot as plt
    import numpy as np
    names = [1,2,3]
    values = [1,10,100]
    # 设置画布大小
    plt.figure(1,figsize = (9,3))
    # 画出三幅图,分别设置
    plt.subplot(1,3,1)
    plt.bar(names,values)
    plt.subplot(1,3,2)
    plt.scatter(names,values)
    plt.subplot(1,3,3)
    plt.plot(names,values)
    plt.suptitle('Categorical Plotting')
    plt.show()

     4.创建多图

    import matplotlib .pyplot as plt
    plt.figure(1)
    plt.subplot(2,1,1)
    plt.plot([1,2,3])
    plt.title('Easy as 1,2,3')
    plt.subplot(2,1,2)
    plt.plot([4,5,6])
    plt.show()
    
    plt.figure(2)
    plt.plot([4,5,6])
    plt.show()

    import matplotlib.pyplot as plt
    import numpy as np
    np.random.seed(19680801)
    data = np.random.randn(2,100)
    
    fig,axs = plt.subplots(2,2,figsize = (5,5))
    axs[0,0].hist(data[0])
    axs[1,0].scatter(data[0],data[1])
    axs[0,1].plot(data[0],data[1])
    axs[1,1].hist2d(data[0],data[1])
    
    plt.show()

     5.添加文本:轴标签,属性标签

    import matplotlib.pyplot as plt 
    import numpy as np
    mu ,sigma = 100,15 x = mu + sigma *np.random.randn(100000) n,bins, patches = plt.hist(x,50,normed = True ,facecolor = 'g',alpha = 0.75) plt.xlabel('Smarts') plt.ylabel('Probability') plt.title('Histogram of IQ') # 支持latex/ plt.text(60,0.025,r'$mu =100, sigma = 15$') plt.axis([40,160,0,0.03]) plt.grid(True) plt.show()

  • 相关阅读:
    git版本回退问题记录
    git add的各种情况分类
    代码优化积累【持续更新】
    package.json和package-lock.json的区别
    new Date在IE下面兼容问题
    git fetch和git pull的区别
    Node.Js的热更新服务——supervisor
    springboot 指定启动环境
    java后台解决上传图片翻转90的问题,有demo,经过测试可用
    intellij IDEA 实用快捷键
  • 原文地址:https://www.cnblogs.com/IT-NXXB/p/14748776.html
Copyright © 2020-2023  润新知