• 假设检验


    本文主要介绍三种假设检验:t-检验,f-检验,z-检验,卡方检验

    t-检验:

    适用范围》

    可用于检验样本为来自一元正太分布的总体期望,即均值;

    检验2个来自正太分布总体的样本均值是否相等;

    对线性回归系数的显著性进行检验;

    (在多元回归中,可先用F-检验考察整个回归方程的显著性,在对每个系数是否为0进行t-检验)

    故t检验常常用于检验单正态总体与两正态总体的均值异同(方差未知,方差已知可直接用Z检验),原假设为均值无显著差异

    应用条件》

    单因素设计的小样本(n<30)计量资料;
    样本来自正太分布总体;
    总体标准差未知;
    两样本均数比较时,要求两样本相应的总体方差相等

    目的》

    比较样本均数所代表的未知总体均数u和已知总体均数u0

    计算公式》

              X -- u0
      t = -----------------    , 自由度为: v = n - 1
              s /  sqrt(x)
     

    检验步骤》

    (1)建立零假设H0 : u1=u2 ,即先假定两个总体平均数之间没有显著性差异
    (2)计算统计量 T 的值,对于不同类型的问题选用不同的统计计量方法
    (3)根据自由度 v=n-1,查T值表,找出规定的T理论值并进行比较。理论值差异的显著性水平为0.01级或者0.05级。记为T(df)0.01和T(df)0.05
    (4)比较计算得到的t值和理论T值,推断发生的概率,依据T值与差异显著性关系表做出判断
     
    t-检验分为单样本和双样本两种情况,其中单样本能对总体均值进行双侧检验和单侧检验;
    双样本分析能对双样本均值差,等方差双样本和异方差双样本进行检验
     

    实例》

    1、成对样本均值差检验。(新旧生产方法产品纯度均值差检验,检验新生产方法纯度有无显著提高)
    2、等方差双样本的t-检验。(也可检验新生产方法纯度有无显著提高)     但结论可能有所不同
    3、异方差双样本的t-检验。(也可检验新生产方法纯度有无显著提高)
    4、小样本下的总体均值检验。(某班男生平均身高的判定,是否在0.05的显著性水平下认为身高为174cm)
          在总体方差未知的情况下,可以用能计算出的样本的标准差s来代替未知的总体标准差,
    但此时新统计量不再服从正态分布,而是服从自由度为n-1的t分布。
          小样本的检验可分为双侧检验和单侧检验。对于总体均值的双侧检验,有两种方法:有界值法和P值法
     
     

    F-检验

     

    适用范围》

     
    F-检验又叫方差齐性检验。
    在两样本t-检验中要用到F-检验;
    从两研究总体中随机抽取样本,要对这两个样本进行比较时,首先判断两总体方差是否相同,即方差齐性。要判断两总体方差是否相等,就可以用F-检验。
    简单的说,F-检验就是检验两个样本的方差是否有显著性差异,这是选择何种t-检验的前提条件
    原假设是方差无显著差异
     

    检验原理》

     
    对于来自两个总体的样本,其总体方差分别为w1^2和w2^2,从两个总体中独立地抽取容量为n1和n2的样本组,对应样本方差分别为s1^2和s2^2。则F-检验统计量为
                                                                         s1^2/w1^2
                                                           F =    ------------------------
                                                                         s2^2/w2^2
    F-检验分子自由度为n1-1,F-检验分母自由度为n2-1
    F-检验分为双侧检验和单侧右尾检验
    双侧检验:H0:w1=w2          H1:w1 != w2
                      对应拒绝域为 F<= F[1-x/2](n1-1,n2-1)和 F >= F[x/2](n1-1,n2-1)
    单侧右尾检验:H0:w1>=w2      H1:w1<w2      
                      对应拒绝域为 F > F[1-x](n1-1,n2-1)
     

    实例》

    1、两总体方差检验(用两总体方差检验零件质量差别)【双侧】
         随即抽取两台机器A、B生产的零件各30个,其直径的标准差分别是18mm和25mm,用样本直径的方差作为检验机器生产零件质量的方法,方差越大质量越差。试在0.05的显著性水平下判断A、B的质量是否存在不同
     
    2、单侧右尾检验(用F-检验判断质量的优劣)
         随即抽取两台机器A、B生产的零件各20个,其直径如表中数据(机器A零件的直径一组数据,机器B零件的一组数据)。用样本直径的方差作为检验机器生产零件质量的方法,方差越大质量越差。试在0.05的显著性水平下判断A、B的质量优劣
     
     

    Z-检验

     

    适用范围》

    Z-检验是一般用于大样本(即样本容量大于30)平均值差异性检验的方法。
    它是用标准正太分布的理论来推断差异发生的概率,从而比较两个样本均值的差异是否显著
    当已知标准差时,验证一组数的均值是否与某一期望值相等时,用Z-检验
     

    检验原理》

    当总体服从均值为u方差为w^2的正态分布时,取总体的随机样本x1,x2,.......,xn,
    样本均值xba服从均值为u,方差为w^2/n的正态分布,即
                                xba~N(u,w^2/n)
    若xba进行标准化,对应的Z统计量为
                                                     xba-u
                                        z   =  ---------------
                                                  w/ sqrt(n)
    当总体方差未知,且样本容量n>30时,可用正太分布近似代替t分布,因此无论方差是否可知,只要样本足够大,
    抽样分布就会服从正太分布。对应的方差未知大样本Z统计量为
                                                                           xba-u
                                                            z    =   -------------
                                                                          s/ sqrt(n)
    对于正态分布的两总体,均值分别是u1和u2,标准差为w1和w2,样本均值为x1ba和x2ba,Z统计量为
                                                                             (x1ba-x2ba)- (u1-u2)
                                                             z     =      ------------------------------------
                                                                              sqrt( w1^2/n1+w2^2/n2)
                    

    检验步骤》

    1、建立零假设,即先假定两个平均数之间没有显著差异
    2、计算Z统计量的值,对于不同类型的问题选用不同的统计量计算方法
    3、比较计算所得Z值与理论Z值,推断发生的概率,依据Z值与差异显著性关系表做出判断
    4、根据以上分析,结合具体情况,做出结论

    实例》

    1、临界值法进行方差已知的总体均值双侧检验(y用临界值法进行方差已知的产品合格检验)
         某厂铸造的零件强度服从正态分布,其标准差为12(kN/mm^2),均值为200(kN/mm^2)。
    为检测产品质量,从中取16个样本,测得平均值Xba=197.25(kN/mm^2),
    试判断能否在0.05的显著性水平下认为产品合格
     
    2、P值法进行方差已知的总体均值单侧检验(同上)
     
    3、运用ZTEST函数进行方差未知的大样本总体均值假设检验(利用ZTEST函数对产品进行检验)
         某厂铸造的零件强度服从正态分布,其标准差未知,为检测产品质量,从中取40个样本,如表示。
    试判断能否在0.05的显著性水平下认为产品抗压强度为200(kN/mm^2)
     
    4、运用数学分析工具进行z-检验(对两台机器生产的零件进行抗压强度对比)
         某厂有甲乙两台机器铸造的零件,两台机器的产品强度均服从正太分布,机器甲的标准差为12,机器乙的标准差为16
    为检测产品质量,从甲乙两台机器的产品中各取20个样本如表所示(甲乙两组数据),
    试判断能否在0.05的显著性水平下甲乙两台机器生产的零件抗压强度有无差别
     
     

    卡方检验

     
    一般用于列联表的独立性检验
     
    原假设:假设两个变量是相互独立,互不关联的
                  假设观测频数与期望频数没有差别
                 假设顾客今年的颜色偏好与去年无显著差异
  • 相关阅读:
    XML
    编码格式
    CSS 实现加载动画之七-彩环旋转
    CSS 实现加载动画之六-大风车
    CSS 实现加载动画之五-光盘旋转
    CSS 实现加载动画之四-圆点旋转
    CSS 实现加载动画之三-钢琴按键
    CSS 实现加载动画之二-圆环旋转
    CSS 实现加载动画之一-菊花旋转
    JS案例之8——从一个数组中随机取数
  • 原文地址:https://www.cnblogs.com/Hyacinth-Yuan/p/8313024.html
Copyright © 2020-2023  润新知