• lattice, reciprocal lattice, OUTCAR


    Lattice

    1. some definitions

    real space lattice, (overrightarrow{a_1}), (overrightarrow{a_2}), (overrightarrow{a_3}); reciprocal space lattice, reclat, (overrightarrow{rec_1}), (overrightarrow{rec_2}), (overrightarrow{rec_3})
    (overrightarrow{rec_1}=2pifrac{overrightarrow{a_2} imesoverrightarrow{a_3}}{V}, overrightarrow{rec_2}=2pifrac{overrightarrow{a_3} imesoverrightarrow{a_1}}{V}, overrightarrow{rec_3}=2pifrac{overrightarrow{a_1} imesoverrightarrow{a_2}}{V})
    However, in this article, we use same definition as reciprocal lattice in OUTCAR.
    (overrightarrow{b_1}=frac{overrightarrow{a_2} imesoverrightarrow{a_3}}{V}, overrightarrow{b_2}=frac{overrightarrow{a_3} imesoverrightarrow{a_1}}{V}, overrightarrow{b_2}=frac{overrightarrow{a_3} imesoverrightarrow{a_1}}{V}\lat=left[egin{matrix}overrightarrow{a_1}\overrightarrow{a_2}\overrightarrow{a_3}\end{matrix} ight],reclat=left[egin{matrix}overrightarrow{b_1}\overrightarrow{b_2}\overrightarrow{b_3}\end{matrix} ight],)
    considering ([overrightarrow{a_1}][overrightarrow{b_1}]^T=overrightarrow{a_1}cdotoverrightarrow{b_1}=a_{11}b_{11}+a_{12}b_{12}+a_{13}b_{13})
    Here, we can easily get,
    (lat imes reclat^T==left[egin{matrix}1&0&0\0&1&0\0&0&1end{matrix} ight])

    2. OUTCAR

    grep -A3 "reciprocal lattice vectors" OUTCAR | sed -n 2,4p
    3.945159882 0.000000000 0.000000000 0.253475152 0.000000000 0.000000000
    0.000000000 3.921179652 0.000000000 0.000000000 0.255025296 0.000000000
    0.000000000 0.000000000 23.273546976 0.000000000 0.000000000 0.042967237
    

    the OUTCAR give us
    (lat=left[egin{matrix}3.945&0&0\0&3.921&0\0&0&23.274end{matrix} ight])
    (reclat=left[egin{matrix}0.253&0&0\0&0.255&0\0&0&0.0430end{matrix} ight])

    3. Coordinate transformation

    (left[egin{matrix}kc_1&kc_2&kc_3end{matrix} ight]=left[egin{matrix}kf_1&kf_2&kf_3end{matrix} ight]left[egin{matrix}overrightarrow{b_1}\overrightarrow{b_2}\overrightarrow{b_3}\end{matrix} ight])

    (left[egin{matrix}xc_1&xc_2&xc_3end{matrix} ight]=left[egin{matrix}xf_1&xf_2&xf_3end{matrix} ight]left[egin{matrix}overrightarrow{a_1}\overrightarrow{a_2}\overrightarrow{a_3}\end{matrix} ight])

  • 相关阅读:
    MsSql数据库存储过程加密解密
    Delete Exists
    SQL Server 2008数据库日志收缩
    MSSQL PIVOT 实现行列转置
    Oracle中将查询出的多条记录的某个字段拼接成一个字符串的方法
    oracle的分析函数over 及开窗函数
    Asprise-OCR的使用
    【整理】动态加载Web Services
    【转载】Python正则表达式指南
    Mac中PyCharm设置GitHub的步骤
  • 原文地址:https://www.cnblogs.com/HuaNeedsPills/p/10836574.html
Copyright © 2020-2023  润新知