• 用贝叶斯定理解决三门问题并用Python进行模拟(Bayes' Rule Monty Hall Problem Simulation Python)


    三门问题(Monty Hall problem)也称为蒙提霍尔问题或蒙提霍尔悖论,出自美国的电视游戏节目《Let’s Make a Deal》。问题名字来自该节目的主持人蒙提·霍尔(Monty Hall)。

    这个游戏的玩法是:参赛者会看见三扇关闭的门,其中一扇门后面有一辆汽车,选中后面有车的那扇门就可以赢得该汽车,而另外两扇门后面则各藏有一只山羊。当参赛者选定了一扇门,但未去开启它的时候,节目主持人会开启剩下两扇门中的一扇,露出其中一只山羊。主持人其后会问参赛者要不要更换其初始的选择,选另一扇仍然关上的门。

    那么问题来了,参赛者到底要不要更换其初始的选择呢?

    解决这个问题需要用到贝叶斯定理:

    让我们选一个特定的例子来看看:假设三扇门分别为Door A,Door  B,Door C,并且参赛者初始选定了Door A,然后主持人展示了Door  B。那么参赛者是坚持选择Door A还是更换成Door C呢?这就要根据Door A和Door C哪个门后汽车出现的概率较大决定了。

    也就是说,我们需要解决P(Door A=car|Door A is selected, Door  B is revealed)P(Door C=car|Door A is selected, Door  B is revealed)哪个大的问题。

    首先,每个门后有车的概率都是1/3:

    其次,如果Door A门后有汽车,那么Door A被选择的几率是1/3,假设初始选择了Door A,那么Door B被主持人打开的几率是1/2:

    再次,普通情况下,Door A被选择的几率是1/3,Door B被主持人打开的几率是1/2(因为已经有一扇门被选择了,选择的门不能被打开):

    同理,如果Door C门后有汽车,那么Door A被选择的几率是1/3,假设初始选择了Door A,那么Door B被主持人打开的几率是1:

    因此,我们可以看到,P(Door C=car|Door A is selected, Door  B is revealed)是P(Door A=car|Door A is selected, Door  B is revealed)的两倍。也就是说,更换初始的选择将会使我们的获胜几率提高2倍!

    可以用probability tree来帮助理解一下:

    如果对上面的计算公式还有疑问,那么让我们用计算机来模拟一下:

    from random import randint
    from random import choice
    
    N = 1000
    
    def simulate(N):
        m=0   #设置不更换初始选择赢得汽车的次数
        n=0   #设置更换初始选择赢得汽车的次数
        for i in range(N):  #模拟1000次游戏
            win=randint(1,3)  #设置藏有汽车的门,在1-3之间随机选出
            bet1=randint(1,3)   #设置初始选择的门,在1-3之间随机选出
            remain=[i for i in range(1,4) if i!=win and i!=bet1]  #剩余可选的门(除去初始选择的门和藏有汽车的门)
            monty_reveal=choice(remain)  #monty会在剩余可选的门中选择一扇门打开
            bet2=6-bet1-monty_reveal  #bet2表示更换初始选择(用6减是因为三扇门加起来等于6)
            if bet1==win:  #如果初始选择和藏有汽车的门吻合,那么初始选择的获胜次数+1
                m+=1
            if bet2==win:  ##如果更换初始选择的bet2和藏有汽车的门吻合,那么bet2的获胜次数+1
                n+=1
        return n/m
     
    print(simulate(N))
    2.0211480362537766

    最后的结果: 更换初始选择获胜的次数差不多是不更换初始选择获胜次数的两倍。

    三门问题是有些反直觉的,我们可以这样来理解:当参赛者选择Door A时,他的获胜概率是1/3,当主持人展示了Door B门后没有汽车以后,这个信息并没有给参赛者的初始选择带来任何有用的信息 ,选择Door A获胜的概率仍然是1/3,但是鉴于选择Door B获胜的概率降为了0,因此选择Door C获胜的概率变为1-1/3,也就是2/3。

    参考:https://classroom.udacity.com/courses/st101/lessons/48744119/concepts/484806120923

  • 相关阅读:
    getField();在TP5里成什么了?
    .NET微信公众号开发-1.0初始微信公众号
    【原创】基于Bootstrap的Modal二次封装
    [原创]EF架构随心所欲打造属于你自己的DbModel
    [原创]Entity Framework查询原理
    [原创]扩展方法基本用法
    【原创】贡献一个项目中用到的js身份证验证-超级准!!!
    【原创】用JQury来制作星星打分特效功能
    【原创】Jquery初体验二
    Jquery初体验一
  • 原文地址:https://www.cnblogs.com/HuZihu/p/9056224.html
Copyright © 2020-2023  润新知