• 机器学习的原理


    机器学习第二问 --- 机器是如何学习的?(How can machine learn?)

    简单来说,机器学习是这样的一个过程:输入我们收集的训练数据,通过学习算法检验所有可能的假设(假设用函数表示),找到一个最近似于真实规律的假设。如下图所示:

     一些术语:

    • 特征(Feature)xX,输入的一些描述
    • 目标(Target)yY,特征所对应的分类或值,比如说某个肿瘤是良性的还是恶性的,或者某个房子可以卖多少钱
    • 真实的目标函数(True Target Function)fXY,特征和目标之间的真实规律,用函数表示
    • 训练数据(Training Data)D={(x1,y1),(x2,y2),,(xn,yn)},是之前积累的记录,在现实生活中,训练数据是有噪声的,比如说记录错误,缺失值,测量误差等
    • 假设集(Hypothesis Set)hH,所有可能表示特征和目标之间规律的函数
    • 学习到的函数(Learned Formula)gXY,机器从训练数据中学到的规律,用函数表示,我们期望学到的g表现足够好,即gf
    • 机器学习算法(Learning Algorithm)A,由D产生g的算法,A会从各种不同假设h构成的集合H中挑选出一个最好的g,使得gf
  • 相关阅读:
    FZU 2113 BCD Code 数位dp
    Gym 100917L Liesbeth and the String 规律&&胡搞
    Gym 100917C Constant Ratio 数论+暴力
    CF149D Coloring Brackets
    P4342 [IOI1998]Polygon
    P4316 绿豆蛙的归宿
    P1439 【模板】最长公共子序列
    Noip 2013 真题练习
    洛谷比赛 「EZEC」 Round 4
    P5024 保卫王国
  • 原文地址:https://www.cnblogs.com/HuZihu/p/10871349.html
Copyright © 2020-2023  润新知