原文链接:Redisson分布式锁学习总结:公平锁 RedissonFairLock#lock 获取锁源码分析
一、RedissonFairLock#lock 源码分析
public class RedissonFairLockDemo {
public static void main(String[] args) {
RedissonClient client = RedissonClientUtil.getClient("");
RLock fairLock = client.getFairLock("myLock");
// 最常见的使用方法
try {
fairLock.lock();
}catch (Exception e){
e.printStackTrace();
}finally {
fairLock.unlock();
}
}
}
1、根据锁key计算出 slot,一个slot对应的是redis集群的一个节点
RedissonFairLock 其实是 RedissonLock 的子类,它主要是基于 RedissonLock 做的扩展,主要扩展在于加锁和释放锁的地方,其他的逻辑都直接复用 RedissonLock:例如加锁前计算slot、watchdog机制等等。
2、RedissonFairLock 之 lua 脚本加锁
RedissonFairLock#tryLockInnerAsync:里面有两段 lua 脚本,我们现在只需要关注第二段即可。
if (command == RedisCommands.EVAL_LONG) {
return evalWriteAsync(getName(), LongCodec.INSTANCE, command,
// remove stale threads
"while true do " +
"local firstThreadId2 = redis.call('lindex', KEYS[2], 0);" +
"if firstThreadId2 == false then " +
"break;" +
"end;" +
"local timeout = tonumber(redis.call('zscore', KEYS[3], firstThreadId2));" +
"if timeout <= tonumber(ARGV[4]) then " +
// remove the item from the queue and timeout set
// NOTE we do not alter any other timeout
"redis.call('zrem', KEYS[3], firstThreadId2);" +
"redis.call('lpop', KEYS[2]);" +
"else " +
"break;" +
"end;" +
"end;" +
// check if the lock can be acquired now
"if (redis.call('exists', KEYS[1]) == 0) " +
"and ((redis.call('exists', KEYS[2]) == 0) " +
"or (redis.call('lindex', KEYS[2], 0) == ARGV[2])) then " +
// remove this thread from the queue and timeout set
"redis.call('lpop', KEYS[2]);" +
"redis.call('zrem', KEYS[3], ARGV[2]);" +
// decrease timeouts for all waiting in the queue
"local keys = redis.call('zrange', KEYS[3], 0, -1);" +
"for i = 1, #keys, 1 do " +
"redis.call('zincrby', KEYS[3], -tonumber(ARGV[3]), keys[i]);" +
"end;" +
// acquire the lock and set the TTL for the lease
"redis.call('hset', KEYS[1], ARGV[2], 1);" +
"redis.call('pexpire', KEYS[1], ARGV[1]);" +
"return nil;" +
"end;" +
// check if the lock is already held, and this is a re-entry
"if redis.call('hexists', KEYS[1], ARGV[2]) == 1 then " +
"redis.call('hincrby', KEYS[1], ARGV[2],1);" +
"redis.call('pexpire', KEYS[1], ARGV[1]);" +
"return nil;" +
"end;" +
// the lock cannot be acquired
// check if the thread is already in the queue
"local timeout = redis.call('zscore', KEYS[3], ARGV[2]);" +
"if timeout ~= false then " +
// the real timeout is the timeout of the prior thread
// in the queue, but this is approximately correct, and
// avoids having to traverse the queue
"return timeout - tonumber(ARGV[3]) - tonumber(ARGV[4]);" +
"end;" +
// add the thread to the queue at the end, and set its timeout in the timeout set to the timeout of
// the prior thread in the queue (or the timeout of the lock if the queue is empty) plus the
// threadWaitTime
"local lastThreadId = redis.call('lindex', KEYS[2], -1);" +
"local ttl;" +
"if lastThreadId ~= false and lastThreadId ~= ARGV[2] then " +
"ttl = tonumber(redis.call('zscore', KEYS[3], lastThreadId)) - tonumber(ARGV[4]);" +
"else " +
"ttl = redis.call('pttl', KEYS[1]);" +
"end;" +
"local timeout = ttl + tonumber(ARGV[3]) + tonumber(ARGV[4]);" +
"if redis.call('zadd', KEYS[3], timeout, ARGV[2]) == 1 then " +
"redis.call('rpush', KEYS[2], ARGV[2]);" +
"end;" +
"return ttl;",
Arrays.asList(getName(), threadsQueueName, timeoutSetName),
internalLockLeaseTime, getLockName(threadId), wait, currentTime);
}
lua 脚本虽然很长,但其实作者给的注释也是非常的清晰,让我们知道lua脚本每一步的含义,所以下面我将讲解每一个分支究竟利用redis命令做了什么。
2.1、KEYS
Arrays.asList(getName(), threadsQueueName, timeoutSetName):
- getName(): 锁key
- threadsQueueName:prefixName("redisson_lock_queue", name),用于锁排队
- timeoutSetName:prefixName("redisson_lock_timeout", name),用于队列中每个客户端的等待超时时间
KEYS:["myLock","redisson_lock_queue:{myLock}","redisson_lock_timeout:{myLock}"]
2.2、ARGVS
internalLockLeaseTime, getLockName(threadId), wait, currentTime:
- internalLockLeaseTime:其实就是 watchdog 的超时时间,默认是30000毫秒,可看 Config#lockWatchdogTimeout。
private long lockWatchdogTimeout = 30 * 1000;
- getLockName(threadId):return id + ":" + threadId,客户端ID(UUID):线程ID(threadId)
- wait:就是 threadWaitTime,默认30_0000毫秒
public RedissonFairLock(CommandAsyncExecutor commandExecutor, String name) { this(commandExecutor, name, 60000*5); } public RedissonFairLock(CommandAsyncExecutor commandExecutor, String name, long threadWaitTime) { super(commandExecutor, name); this.commandExecutor = commandExecutor; this.threadWaitTime = threadWaitTime; threadsQueueName = prefixName("redisson_lock_queue", name); timeoutSetName = prefixName("redisson_lock_timeout", name); }
- currentTime:当前时间时间戳
ARGVS:[30_000毫秒,"UUID:threadId",30_0000毫秒,当前时间戳]
2.3、lua 脚本分析
1、分支一:清理过期的等待线程
场景:
这个死循环的作用主要用于清理过期的等待线程,主要避免下面场景,避免无效客户端占用等待队列资源
- 获取锁失败,然后进入等待队列,但是网络出现问题,那么后续很有可能就不能继续正常获取锁了。
- 获取锁失败,然后进入等待队列,但是之后客户端所在服务器宕机了。
"while true do " +
"local firstThreadId2 = redis.call('lindex', KEYS[2], 0);" +
"if firstThreadId2 == false then " +
"break;" +
"end;" +
"local timeout = tonumber(redis.call('zscore', KEYS[3], firstThreadId2));" +
"if timeout <= tonumber(ARGV[4]) then " +
// remove the item from the queue and timeout set
// NOTE we do not alter any other timeout
"redis.call('zrem', KEYS[3], firstThreadId2);" +
"redis.call('lpop', KEYS[2]);" +
"else " +
"break;" +
"end;" +
"end;" +
-
开启死循环
-
利用 lindex 命令判断等待队列中第一个元素是否存在,如果存在,直接跳出循环
lidex redisson_lock_queue:{myLock} 0
-
如果等待队列中第一个元素不为空(例如返回了LockName,即客户端UUID拼接线程ID),利用 zscore 在 超时记录集合(sorted set) 中获取对应的超时时间
zscore redisson_lock_timeout:{myLock} UUID:threadId
-
如果超时时间已经小于当前时间,那么首先从超时集合中移除该节点,接着也在等待队列中弹出第一个节点
zrem redisson_lock_timeout:{myLock} UUID:threadId lpop redisson_lock_queue:{myLock}
-
如果等待队列中的第一个元素还未超时,直接退出死循环
2、分支二:检查是否可成功获取锁
场景:
- 其他客户端刚释放锁,并且等待队列为空
- 其他客户端刚释放锁,并且等待队列中的第一个元素就是当前客户端当前线程
// check if the lock can be acquired now
"if (redis.call('exists', KEYS[1]) == 0) " +
"and ((redis.call('exists', KEYS[2]) == 0) " +
"or (redis.call('lindex', KEYS[2], 0) == ARGV[2])) then " +
// remove this thread from the queue and timeout set
"redis.call('lpop', KEYS[2]);" +
"redis.call('zrem', KEYS[3], ARGV[2]);" +
// decrease timeouts for all waiting in the queue
"local keys = redis.call('zrange', KEYS[3], 0, -1);" +
"for i = 1, #keys, 1 do " +
"redis.call('zincrby', KEYS[3], -tonumber(ARGV[3]), keys[i]);" +
"end;" +
// acquire the lock and set the TTL for the lease
"redis.call('hset', KEYS[1], ARGV[2], 1);" +
"redis.call('pexpire', KEYS[1], ARGV[1]);" +
"return nil;" +
"end;" +
-
当前锁还未被获取 and(等待队列不存在 or 等待队列的第一个元素是当前客户端当前线程)
exists myLock:判断锁是否存在 exists redisson_lock_queue:{myLock}:判断等待队列是否为空 lindex redisson_lock_timeout:{myLock} 0:获取等待队列中的第一个元素,用于判断是否等于当前客户端当前线程
-
如果步骤1满足,从等待队列和超时集合中移除当前线程
lpop redisson_lock_queue:{myLock}:弹出等待队列中的第一个元素,即当前线程 zrem redisson_lock_timeout:{myLock} UUID:threadId:从超时集合中移除当前客户端当前线程
-
刷新超时集合中,其他元素的超时时间,即更新他们得分数
zrange redisson_lock_timeout:{myLock} 0 -1:从超时集合中获取所有的元素
遍历,然后执行下面命令更新分数,即超时时间:
zincrby redisson_lock_timeout:{myLock} -30w毫秒 keys[i]
因为这里的客户端都是调用 lock()方法,就是等待直到最后获取到锁;所以某个客户端可以成功获取锁的时候,要帮其他等待的客户端刷新一下等待时间,不然在分支一的死循环中就被干掉了。
-
最后,往加锁集合(map) myLock 中加入当前客户端当前线程,加锁次数为1,然后刷新 myLock 的过期时间,返回nil
hset myLock UUID:threadId 1:将当前线程加入加锁记录中。 espire myLock 3w毫秒:重置锁的过期时间。
加入此节点后,map集合如下:
myLock:{ "UUID:threadId":1 }
使用这个map记录加锁次数,主要用于支持可重入加锁。
3、分支三:当前线程曾经获取锁,重复获取锁。
场景:
- 当前线程已经成功获取过锁,现在重新再次获取锁。
- 即:Redisson 的公平锁是支持可重入的。
"if redis.call('hexists', KEYS[1], ARGV[2]) == 1 then " +
"redis.call('hincrby', KEYS[1], ARGV[2],1);" +
"redis.call('pexpire', KEYS[1], ARGV[1]);" +
"return nil;" +
"end;" +
-
利用 hexists 命令判断加锁记录集合中,是否存在当前客户端当前线程
hexists myLock UUID:threadId
-
如果存在,那么增加加锁次数,并且刷新锁的过期时间
hincrby myLock UUID:threadId 1:增加加锁次数 pexpire myLock 30000毫秒:刷新锁key的过期时间
4、分支四:当前线程本就在等待队列中,返回等待时间
"local timeout = redis.call('zscore', KEYS[3], ARGV[2]);" +
"if timeout ~= false then " +
// the real timeout is the timeout of the prior thread
// in the queue, but this is approximately correct, and
// avoids having to traverse the queue
"return timeout - tonumber(ARGV[3]) - tonumber(ARGV[4]);" +
"end;" +
-
利用 zscore 获取当前线程在超时集合中的超时时间
zscore redisson_lock_timeout:{myLock} UUID:threadId
-
返回实际的等待时间为:超时集合里的时间戳-30w毫秒-当前时间戳
5、分支五:当前线程首次尝试获取锁,将当前线程加入到超时集合中,同时放入等待队列中
"local lastThreadId = redis.call('lindex', KEYS[2], -1);" +
"local ttl;" +
"if lastThreadId ~= false and lastThreadId ~= ARGV[2] then " +
"ttl = tonumber(redis.call('zscore', KEYS[3], lastThreadId)) - tonumber(ARGV[4]);" +
"else " +
"ttl = redis.call('pttl', KEYS[1]);" +
"end;" +
"local timeout = ttl + tonumber(ARGV[3]) + tonumber(ARGV[4]);" +
"if redis.call('zadd', KEYS[3], timeout, ARGV[2]) == 1 then " +
"redis.call('rpush', KEYS[2], ARGV[2]);" +
"end;" +
"return ttl;",
-
利用 lindex 命令获取等待队列中排在最后的线程
lindex redisson_lock_queue:{myLock} -1
-
计算 ttl
- 如果等待队列中最后的线程不为空且不是当前线程,根据此线程计算出ttl
zscore redisson_lock_timeout:{myLock} lastThreadId:获取等待队列中最后的线程得过期时间 ttl = timeout - 当前时间戳
- 如果等待队列中不存在其他的等待线程,直接返回锁key的过期时间
ttl = pttl myLock
-
计算timeout,并将当前线程放入超时集合和等待队列中
timeout = ttl + 30w毫秒 + 当前时间戳 zadd redisson_lock_timeout:{myLock} timeout UUID:threadId:放入超时集合 rpush redisson_lock_queue:{myLock} UUID:threadId:如果成功放入超市集合,同时放入等待队列
-
最后返回ttl
3、watchdog 不断为锁续命
因为 RedissonFairLock 是基于 RedissonLock 做的,所以 watchdog 还是 RedissonLock 那一套。
4、死循环获取锁
因为 RedissonFairLock 是基于 RedissonLock 做的,所以死循环获取锁也还是 RedissonLock 那一套。
5、其他的加锁方式
如果我们需要指定获取锁成功后持有锁的时长,可以执行下面方法,指定 leaseTime
lock.lock(10, TimeUnit.SECONDS);
如果指定了 leaseTime,watchdog就不会再启用了。
如果不但需要指定持有锁的时长,还想避免锁获取失败时的死循环,可以同时指定 leaseTime 和 waitTime
boolean res = lock.tryLock(100, 10, TimeUnit.SECONDS);
如果指定了 waitTime,只会在 waitTime 时间内循环尝试获取锁,超过 waitTime 如果还是获取失败,直接返回false。