这个题也是线段树的基础题,有了上一个题的基础,在做这个题就显得比较轻松了,大体都是一样的,那个是求和,这个改成求最大值,基本上思路差不多,下面是代码的实现
1 #include <cstdio> 2 #include <cstring> 3 #include <algorithm> 4 5 using namespace std; 6 7 const int MAX = 200010 * 4; 8 int segment[MAX]; 9 //向上调整 10 void pushUp(int root) 11 { 12 segment[root] = max(segment[root * 2], segment[root * 2 + 1]); 13 } 14 15 void buildTree(int root, int left, int right) 16 { 17 if(left == right) 18 { 19 scanf("%d", &segment[root]); 20 return; 21 } 22 int mid = (left + right) / 2; 23 buildTree(root * 2, left, mid); 24 buildTree(root * 2 + 1, mid + 1, right); 25 //要把跟他上面所有关联的节点都要更新 26 pushUp(root); 27 } 28 //更新节点 29 void update(int root, int pos, int update_num, int left, int right) 30 { 31 if(left == right) 32 { 33 segment[root] = update_num; 34 return; 35 } 36 int mid = (left + right) / 2; 37 if(pos <= mid) 38 { 39 update(root * 2, pos, update_num, left, mid); 40 } 41 else 42 { 43 update(root * 2 + 1, pos, update_num, mid + 1, right); 44 } 45 pushUp(root); 46 } 47 //left和right为查到的区间,L和R为需要查询的区间 48 int getMax(int root, int left, int right, int L, int R) 49 { 50 if(L == left && R == right) 51 { 52 return segment[root]; 53 } 54 int mid = (left + right) / 2; 55 int Max_Num = 0; 56 if(R <= mid) 57 { 58 Max_Num = getMax(root * 2, left, mid, L, R); 59 } 60 else if(L > mid) 61 { 62 Max_Num = getMax(root * 2 + 1, mid + 1, right, L, R); 63 } 64 else 65 { 66 Max_Num = getMax(root * 2, left, mid, L, mid); 67 Max_Num = max(Max_Num, getMax(root * 2 + 1, mid + 1, right, mid + 1, R)); 68 } 69 return Max_Num; 70 } 71 72 int main() 73 { 74 int N, M; 75 while(~scanf("%d %d", &N, &M)) 76 { 77 memset(segment, 0, sizeof(segment)); 78 buildTree(1, 1, N); 79 char ch; 80 int t1, t2; 81 for(int i = 0; i < M; i++) 82 { 83 getchar(); 84 scanf("%c %d %d", &ch, &t1, &t2); 85 if(ch == 'U') 86 { 87 update(1, t1, t2, 1, N); 88 } 89 else 90 { 91 printf("%d ", getMax(1, 1, N, t1, t2)); 92 } 93 } 94 } 95 return 0; 96 }