• 【目标检测】Faster R-CNN (keras) 实验实现


    在上一周的工作中,已经构造了500张图片的数据集。这一周的主要工作则是用该数据集训练自己的模型。

    在网上下载faster r-cnn的代码,修改数据集的地址,手动添加modle文件夹,我自己重新构造后的文件夹目录如下:

    其中,model文件夹目录下的  kitti_frcnn_last.hdf5  为自动生成的模型(还没有修改该模型)

    一、构造要训练的函数,并且设置参数:


    def train_kitti():
    # config for data argument
    cfg = config.Config()

    cfg.use_horizontal_flips = True 使用水平滑动窗口
    cfg.use_vertical_flips = True 使用垂直滑动窗口
    cfg.rot_90 = True 90度翻转(应该为了使用互相关操作)
    cfg.num_rois = 32
    cfg.base_net_weights = os.path.join('./model/', nn.get_weight_path()) 权重
    # TODO: the only file should to be change for other data to train
    cfg.model_path = './model/kitti_frcnn_last.hdf5' 模型的位置
    cfg.simple_label_file = 'kitti_simple_label.txt' 数据集的位置
    print(cfg.simple_label_file)

    all_images, classes_count, class_mapping = get_data(cfg.simple_label_file) 定义所有的图像,类别数,池化

    if 'bg' not in classes_count:
    classes_count['bg'] = 0
    class_mapping['bg'] = len(class_mapping)

    cfg.class_mapping = class_mapping
    with open(cfg.config_save_file, 'wb') as config_f: 打开配置文件
    pickle.dump(cfg, config_f)
    print('Config has been written to {}, and can be loaded when testing to ensure correct results'.format(
    cfg.config_save_file))

    inv_map = {v: k for k, v in class_mapping.items()}

    print('Training images per class:')
    pprint.pprint(classes_count)
    print('Num classes (including bg) = {}'.format(len(classes_count)))
    random.shuffle(all_images) 在所有的图像中随机获取一部分(已经将训练集和验证机按7:3分开了)
    num_imgs = len(all_images) 获取数量
    train_imgs = [s for s in all_images if s['imageset'] == 'trainval'] 获取训练集
    val_imgs = [s for s in all_images if s['imageset'] == 'test'] 获取验证机

    print('Num train samples {}'.format(len(train_imgs)))
    print('Num val samples {}'.format(len(val_imgs)))

    data_gen_train = data_generators.get_anchor_gt(train_imgs, classes_count, cfg, nn.get_img_output_length,
    K.image_dim_ordering(), mode='train')
    data_gen_val = data_generators.get_anchor_gt(val_imgs, classes_count, cfg, nn.get_img_output_length,
    K.image_dim_ordering(), mode='val')

    if K.image_dim_ordering() == 'th':
    input_shape_img = (3, None, None)
    else:
    input_shape_img = (None, None, 3)

    img_input = Input(shape=input_shape_img)
    roi_input = Input(shape=(None, 4))

    # define the base network (resnet here, can be VGG, Inception, etc)
    shared_layers = nn.nn_base(img_input, trainable=True)

    定义RPN网络
    # define the RPN, built on the base layers
    num_anchors = len(cfg.anchor_box_scales) * len(cfg.anchor_box_ratios)
    rpn = nn.rpn(shared_layers, num_anchors)

    classifier = nn.classifier(shared_layers, roi_input, cfg.num_rois, nb_classes=len(classes_count), trainable=True)

    model_rpn = Model(img_input, rpn[:2])
    model_classifier = Model([img_input, roi_input], classifier)

    # this is a model that holds both the RPN and the classifier, used to load/save weights for the models
    model_all = Model([img_input, roi_input], rpn[:2] + classifier)

    try:
    print('loading weights from {}'.format(cfg.base_net_weights))
    model_rpn.load_weights(cfg.model_path, by_name=True)
    model_classifier.load_weights(cfg.model_path, by_name=True)
    except Exception as e:
    print(e)
    print('Could not load pretrained model weights. Weights can be found in the keras application folder '
    'https://github.com/fchollet/keras/tree/master/keras/applications')

    optimizer = Adam(lr=1e-5)
    optimizer_classifier = Adam(lr=1e-5)
    model_rpn.compile(optimizer=optimizer,
    loss=[losses_fn.rpn_loss_cls(num_anchors), losses_fn.rpn_loss_regr(num_anchors)])
    model_classifier.compile(optimizer=optimizer_classifier,
    loss=[losses_fn.class_loss_cls, losses_fn.class_loss_regr(len(classes_count) - 1)],
    metrics={'dense_class_{}'.format(len(classes_count)): 'accuracy'})
    model_all.compile(optimizer='sgd', loss='mae')

    epoch_length = 1000
    num_epochs = int(cfg.num_epochs)
    iter_num = 0

    losses = np.zeros((epoch_length, 5))
    rpn_accuracy_rpn_monitor = []
    rpn_accuracy_for_epoch = []
    start_time = time.time()

    best_loss = np.Inf

    class_mapping_inv = {v: k for k, v in class_mapping.items()}
    print('Starting training')

    vis = True

    for epoch_num in range(num_epochs):

    progbar = generic_utils.Progbar(epoch_length)
    print('Epoch {}/{}'.format(epoch_num + 1, num_epochs))

    while True:
    try:

    if len(rpn_accuracy_rpn_monitor) == epoch_length and cfg.verbose:
    mean_overlapping_bboxes = float(sum(rpn_accuracy_rpn_monitor)) / len(rpn_accuracy_rpn_monitor)
    rpn_accuracy_rpn_monitor = []
    print(
    'Average number of overlapping bounding boxes from RPN = {} for {} previous iterations'.format(
    mean_overlapping_bboxes, epoch_length))
    if mean_overlapping_bboxes == 0:
    print('RPN is not producing bounding boxes that overlap'
    ' the ground truth boxes. Check RPN settings or keep training.')

    X, Y, img_data = next(data_gen_train)

    loss_rpn = model_rpn.train_on_batch(X, Y)

    P_rpn = model_rpn.predict_on_batch(X)

    result = roi_helpers.rpn_to_roi(P_rpn[0], P_rpn[1], cfg, K.image_dim_ordering(), use_regr=True,
    overlap_thresh=0.7,
    max_boxes=300)
    # note: calc_iou converts from (x1,y1,x2,y2) to (x,y,w,h) format
    X2, Y1, Y2, IouS = roi_helpers.calc_iou(result, img_data, cfg, class_mapping)

    if X2 is None:
    rpn_accuracy_rpn_monitor.append(0)
    rpn_accuracy_for_epoch.append(0)
    continue

    neg_samples = np.where(Y1[0, :, -1] == 1)
    pos_samples = np.where(Y1[0, :, -1] == 0)

    if len(neg_samples) > 0:
    neg_samples = neg_samples[0]
    else:
    neg_samples = []

    if len(pos_samples) > 0:
    pos_samples = pos_samples[0]
    else:
    pos_samples = []

    rpn_accuracy_rpn_monitor.append(len(pos_samples))
    rpn_accuracy_for_epoch.append((len(pos_samples)))

    if cfg.num_rois > 1:
    if len(pos_samples) < cfg.num_rois // 2:
    selected_pos_samples = pos_samples.tolist()
    else:
    selected_pos_samples = np.random.choice(pos_samples, cfg.num_rois // 2, replace=False).tolist()
    try:
    selected_neg_samples = np.random.choice(neg_samples, cfg.num_rois - len(selected_pos_samples),
    replace=False).tolist()
    except:
    selected_neg_samples = np.random.choice(neg_samples, cfg.num_rois - len(selected_pos_samples),
    replace=True).tolist()

    sel_samples = selected_pos_samples + selected_neg_samples
    else:
    # in the extreme case where num_rois = 1, we pick a random pos or neg sample
    selected_pos_samples = pos_samples.tolist()
    selected_neg_samples = neg_samples.tolist()
    if np.random.randint(0, 2):
    sel_samples = random.choice(neg_samples)
    else:
    sel_samples = random.choice(pos_samples)

    loss_class = model_classifier.train_on_batch([X, X2[:, sel_samples, :]],
    [Y1[:, sel_samples, :], Y2[:, sel_samples, :]])

    losses[iter_num, 0] = loss_rpn[1]
    losses[iter_num, 1] = loss_rpn[2]

    losses[iter_num, 2] = loss_class[1]
    losses[iter_num, 3] = loss_class[2]
    losses[iter_num, 4] = loss_class[3]

    iter_num += 1

    progbar.update(iter_num,
    [('rpn_cls', np.mean(losses[:iter_num, 0])), ('rpn_regr', np.mean(losses[:iter_num, 1])),
    ('detector_cls', np.mean(losses[:iter_num, 2])),
    ('detector_regr', np.mean(losses[:iter_num, 3]))])

    if iter_num == epoch_length:
    loss_rpn_cls = np.mean(losses[:, 0])
    loss_rpn_regr = np.mean(losses[:, 1])
    loss_class_cls = np.mean(losses[:, 2])
    loss_class_regr = np.mean(losses[:, 3])
    class_acc = np.mean(losses[:, 4])

    mean_overlapping_bboxes = float(sum(rpn_accuracy_for_epoch)) / len(rpn_accuracy_for_epoch)
    rpn_accuracy_for_epoch = []

    if cfg.verbose:
    print('Mean number of bounding boxes from RPN overlapping ground truth boxes: {}'.format(
    mean_overlapping_bboxes))
    print('Classifier accuracy for bounding boxes from RPN: {}'.format(class_acc))
    print('Loss RPN classifier: {}'.format(loss_rpn_cls))
    print('Loss RPN regression: {}'.format(loss_rpn_regr))
    print('Loss Detector classifier: {}'.format(loss_class_cls))
    print('Loss Detector regression: {}'.format(loss_class_regr))
    print('Elapsed time: {}'.format(time.time() - start_time))

    curr_loss = loss_rpn_cls + loss_rpn_regr + loss_class_cls + loss_class_regr
    iter_num = 0
    start_time = time.time()

    if curr_loss < best_loss:
    if cfg.verbose:
    print('Total loss decreased from {} to {}, saving weights'.format(best_loss, curr_loss))
    best_loss = curr_loss
    model_all.save_weights(cfg.model_path)

    break

    except Exception as e:
    print('Exception: {}'.format(e))
    # save model
    model_all.save_weights(cfg.model_path)
    continue
    print('Training complete, exiting.')

    if __name__ == '__main__':
    train_kitti()
    二.训练结果 (运行了6个小时,还没有运行完,在这里只展示一部分结果)

    自己的电脑运行速度比较慢,程序只运行了一部分,但是能看出,每次程序结束后,真实检测框的精度在提高,损失在减少,说明该程序应该没有太大问题,后期会尝试修改里面的算法,试试能不能提高速度或准确度。

    三.注意数据集的采集
    在做实验时,发现一个很严重的问题:因为目前训练的图像,都是人物在图像的中央,导致只有人物在图片中间时,训练效果才比较好,人物在图片边缘,可能检测效果很差,故这周花了很多时间重新做数据集。
    个人建议做数据集的步骤这样子,可以减少很多不必要的麻烦:
    1.将视频按帧抽取图片
    2.将图片处理为416*416(也可以为其他尺寸)
    3.将图片随机的按比例分为训练集和验证集(我这里是8:2)
    4.给分好的图片按顺序编号(这一步很重要,不然会导致后面训练的标签和图片无法对应)
    5.给编号后的图片打标签
    6.将xml格式的标签文件转换为需要的txt文件
    7.检查txt文件是否和图片相对应
    8.没问题就可以用自己的数据集啦~


  • 相关阅读:
    Vue 实例中的生命周期钩子
    公司Git实用记录
    mint-ui —— navbar和tab-container的区别
    jQuery火箭图标返回顶部代码
    jQuery火箭图标返回顶部代码
    jQuery火箭图标返回顶部代码
    jQuery火箭图标返回顶部代码
    jQuery火箭图标返回顶部代码
    jQuery火箭图标返回顶部代码
    jQuery火箭图标返回顶部代码
  • 原文地址:https://www.cnblogs.com/HonsiaBlogs/p/10890178.html
Copyright © 2020-2023  润新知