• POJ 1050 To the Max【最大子矩阵】


    Description

    Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1*1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.
    As an example, the maximal sub-rectangle of the array:

    0 -2 -7 0
    9 2 -6 2
    -4 1 -4 1
    -1 8 0 -2
    is in the lower left corner:

    9 2
    -4 1
    -1 8
    and has a sum of 15.

    Input

    The input consists of an N * N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N^2 integers separated by whitespace (spaces and newlines). These are the N^2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].

    Output

    Output the sum of the maximal sub-rectangle.

    Sample Input

    4
    0 -2 -7 0 9 2 -6 2
    -4 1 -4  1 -1
    
    8  0 -2

    Sample Output

    15

    思路

    将一维的求最大子序列的和进行加强版,同样这里采取相对暴力的方法,时间复杂度为O(N^3)的方法进行枚举每个子矩阵。

    源码

    #include<stdio.h>

    #include<string.h>

    #define MIN -99999999

    int main()

    {

           int i, j, k, f[101][101], a[101], n, mem[101];

           while(scanf("%d", &n)!=EOF)

           {

                  for(i=1; i<=n; i++)

                         for(j=1; j<=n; j++)

                                scanf("%d", &f[i][j]);

                  int maxnum=MIN, change;

                  memset(a, 0, sizeof(a));

                  for(i=1; i<=n; i++)

                  {

                         memset(mem, 0, sizeof(mem));

                         for(j=i; j<=n; j++)

                         {

                                for(k=1; k<=n; k++)

                                {

                                       mem[k]+=f[j][k];

                                       a[k]=mem[k];

                                }

                                change=a[1];

                                for(k=2; k<=n; k++)

                                {

                                       a[k]=a[k]>a[k]+a[k-1]?a[k]:a[k]+a[k-1];

                                       change=a[k]>change?a[k]:change;

                                }

                                maxnum=maxnum>change?maxnum:change;

                         }

                  }

                  printf("%d\n", maxnum);

           }

    }

  • 相关阅读:
    513. Find Bottom Left Tree Value(LeetCode)
    647. Palindromic Substrings(LeetCode)
    537. Complex Number Multiplication(LeetCode)
    338. Counting Bits(LeetCode)
    190. Reverse Bits(leetcode)
    Java多线程核心技术
    正则表达式
    linux 怎么把^M去掉
    分片与分区的区别
    《MYSQL技术精粹》读书笔记
  • 原文地址:https://www.cnblogs.com/Hilda/p/2617235.html
Copyright © 2020-2023  润新知