前几天,在论坛看到有统计说90%的程序员不能写对简单的二分法。二分法不是很简单的吗?
其实,二分法真的不是那么简单,尤其是二分法的各个变种。最最简单的二分法,就是从一个排好序的数组之查找一个key值。如下面程序
/**
* 二分查找 找到该值在数组中的下标 否则为-1
*/
static int binarySearch(int [] array, int key)
{
int left = 0;
int right = array.length - 1;
while(left <= right)
{
int mid = (left + right) / 2;
if(array[mid] == key)
{
return mid;
}
else if(array[mid] < key)
{
left = mid + 1;
}else
{
right = mid - 1;
}
}
return -1;
}
这个程序,相信只要是一个合格的程序员应该都会写。稍微注意点,每次移动left和right 指针的时候, 需要在mid的基础上 + 1 或者 - 1, 防止出现死循环, 程序也就也能够正确运行。
但如果条件稍微变化一下, 你还会写吗?如,数组之中的数据可能可以重复,要求返回匹配的数据的最小(或最大)的下标;更近一步, 需要找出数组中第一个大于key的元素(也就是最小的大于key的元素的)下标,等等。这些,虽然只有一点点的变化,实现的时候确实要更加的细心。下面列出了这些二分检索变种的实现。
- 找出第一个与Key相等元素
// 查找第一个相等的元素
static int findFirstEqual(int [] array, int key)
{
int left = 0;
int right = array.length - 1;
while (left <= right )
{
int mid = (left + right) / 2;
if ( array[mid] >= key)
{
right = mid - 1;
}else{
left = mid + 1;
}
}
if(left < array.length && array[left] == key){
return left;
}
return -1;
}
- 找出最后一个与key相等的元素
// 查找最后一个相等的元素
static int findLastEqual(int[] array, int key) {
int left = 0;
int right = array.length - 1;
// 这里必须是 <=
while (left <= right) {
int mid = (left + right) / 2;
if (array[mid] <= key) {
left = mid + 1;
}
else {
right = mid - 1;
}
}
if (right >= 0 && array[right] == key) {
return right;
}
return -1;
}
3.查找第一个等于或者大于Key的元素
// 查找第一个等于或者大于key的元素
static int findFirstEqualLarger(int[] array, int key) {
int left = 0;
int right = array.length - 1;
// 这里必须是 <=
while (left <= right) {
int mid = (left + right) / 2;
if (array[mid] >= key) {
right = mid - 1;
}
else {
left = mid + 1;
}
}
return left;
}
- 查找第一个大于key的元素
// 查找第一个大于key的元素
static int findFirstLarger(int[] array, int key) {
int left = 0;
int right = array.length - 1;
// 这里必须是 <=
while (left <= right) {
int mid = (left + right) / 2;
if (array[mid] > key) {
right = mid - 1;
}
else {
left = mid + 1;
}
}
return left;
}
- 查找最后一个等于或者小于key的元素
// 查找最后一个等于或者小于key的元素
static int findLastEqualSmaller(int[] array, int key) {
int left = 0;
int right = array.length - 1;
// 这里必须是 <=
while (left <= right) {
int mid = (left + right) / 2;
if (array[mid] > key) {
right = mid - 1;
}
else {
left = mid + 1;
}
}
return right;
}
- 查找最后一个小于key的元素
// 查找最后一个小于key的元素
static int findLastSmaller(int[] array, int key) {
int left = 0;
int right = array.length - 1;
// 这里必须是 <=
while (left <= right) {
int mid = (left + right) / 2;
if (array[mid] >= key) {
right = mid - 1;
}
else {
left = mid + 1;
}
}
return right;
}
接下来,大家可以对这四种变种算法进行相应的测试。
很多的时候,应用二分检索的地方都不是直接的查找和key相等的元素,而是使用上面提到的二分检索的各个变种,熟练掌握了这些变种,当你再次使用二分检索的检索的时候就会感觉的更加的得心应手了。这里,我留给大家一个问题,这种 mid = (left + right) / 2 的写法有什么不足,该怎么改进呢?