算是强迫自己复习一次做的题吧
LuoGu3802 小魔女帕琪
首先很重要的一点:(1-7)放了大招,可能(2-8)也会放大招。这对接下来的推导过程很重要。
先求出前(7)次放出大招的概率。
令(sum=sum_{i=1}^{7}a_i),则有:
(P(7)=frac{a_1}{sum}*frac{a_2}{sum-1}*frac{a_3}{sum-2}*frac{a_4}{sum-3}*frac{a_5}{sum-4}*frac{a_6}{sum-5}*frac{a_7}{sum-6})
考虑到这种两两不同的出现情况可能是一个全排列,实际上(P(7))应该还要乘上(7!)。
接下来考虑在第(8)次放大的概率。
令第一个取出来的是(a_1),则有(P(8)=frac{a_1}{sum}*frac{a_2}{sum-1}*frac{a_3}{sum-2}*frac{a_4}{sum-3}*frac{a_5}{sum-4}*frac{a_6}{sum-5}*frac{a_7}{sum-6}*frac{a_1-1}{sum-7})
这是确定了第一个的,所以第(2-8)个可以任意排列,实际上(P(8))还是要乘上(7!)。
同理,第一个取出来的是(a_2),(a_3)的情况与(a_1)相仿,那么(P(8))的实际大小应该等于(sum_{i=1}^7P'(a_i)),其中(P'(a_i))表示在第一个取出(a_i)的条件下第(8)次放大的概率(条件概率的基本公式)。
现在考虑和式化简。
(P(8)=frac{a_1}{sum}*7!*frac{a_1-1}{sum-1}*frac{a_2}{sum-2}*frac{a_3}{sum-3}*frac{a_4}{sum-4}*frac{a_5}{sum-5}*frac{a_6}{sum-6}*frac{a_7}{sum-7})
(+frac{a_2}{sum}*7!*frac{a_1}{sum-1}*frac{a_2-1}{sum-2}*frac{a_3}{sum-3}*frac{a_4}{sum-4}*frac{a_5}{sum-5}*frac{a_6}{sum-6}*frac{a_7}{sum-7})
(+...)
(+frac{a_7}{sum}*7!*frac{a_1}{sum-1}*frac{a_2}{sum-2}*frac{a_3}{sum-3}*frac{a_4}{sum-4}*frac{a_5}{sum-5}*frac{a_6}{sum-6}*frac{a_7-1}{sum-7})
令(K=prod_{i=1}^7a_i),原式化简为:
(7!/sum/(sum-1)/.../(sum-7)*K*sum_{i=1}^7(a_i-1))
(=7!/sum/(sum-1)/.../(sum-7)*(sum-7)*K)
(=7!/sum/(sum-1)/.../(sum-6)*K)
拆开(K)后有
(P(8)=frac{a_1}{sum}*frac{a_2}{sum-1}*frac{a_3}{sum-2}*frac{a_4}{sum-3}*frac{a_5}{sum-4}*frac{a_6}{sum-5}*frac{a_7}{sum-6}=P(7))
也就是第(8)次放大和第(7)次放大的概率是一样的。
由数学归纳法,易证得(P(i)=P(7),iin[7,sum])
那就好办了
int n = 7, sum;
int a[233];
int main()
{
// freopen("testdata.in", "r", stdin);
for (rg int i = 1; i <= n; ++i) read(a[i]), sum += a[i];
if (sum < 7)
{
printf("0.000");
return 0;
}
rg double ans = 1;
for (rg int i = 1; i <= n; ++i) ans *= 1.0 * a[i] / (sum - i + 1);
printf("%.3lf", ans * 5040ll * (LL)(sum - 6));
return 0;
}
LuoGu4316 绿豆蛙的归宿
根据题意,很容易设计出逆推状态:设(dp[i])表示在第(i)点期望多少步走到终点,显然初始状态(dp[n]=0),所求状态(dp[1])
这里也体现了设计期望(dp)的一般套路:哪个起始状态给定就从哪推 (有可能是我只做了这种简单题)。
我们可以很容易地得到一个状态转移方程如下:
考虑如何进行转移。
题目给定原图是一张DAG,很自然地想到拓扑排序。考虑在拓扑排序时更新(dp)值,我们建一张原图的反图,那么就可以很自然地从节点(n)向节点(1)递推了。
queue<int> q;
inline void topsort()
{
q.push(n);
while (!q.empty())
{
rg int x = q.front();
q.pop();
if (memd[x]) dp[x] = dp[x] / (1.0 * memd[x]);
for (rg int i = head[x]; i; i = e[i].next)
{
rg int v = e[i].v, w = e[i].w;
dp[v] += dp[x] + w;
if (!(--deg[v])) q.push(v);
}
}
}
int main()
{
// freopen("testdata(1).in", "r", stdin);
read(n), read(m);
for (rg int i = 1; i <= m; ++i)
{
read(x), read(y), read(z);
add(y, x, z), ++deg[x], ++memd[x];
}
topsort();
printf("%.2lf", dp[1]);
return 0;
}
LuoGu4550 收集邮票
设(dp[i])表示当前收集了(i)种邮票,距离收集所有邮票的期望次数。易知(dp[n]=0)。考虑逆推:
这个转移方程的意思是:当前已收集(i)种邮票,那么有(frac{i}{n})的概率重复收集,有(frac{n-i}{n})的概率收集到新邮票,当然还要加上本次的花费。
移项,合并同类项后原式化简为:(dp[i]=dp[i+1]+frac{n}{n-i})
对于本题还不够,这个题还有一个状态:花费。
由于花费与收集次数有关,那么考虑求出(dp)后用(dp)辅助更新。
设(pd[i])表示当前收集了(i)邮票,距离收集所有邮票的期望花费。易知(pd[n]=0)。依旧考虑逆推:
这个转移方程的意义是:当前已收集(i)种邮票,那么有(frac{i}{n})的概率重复收集,花费是(frac{i}{n}*(dp[i]+pd[i]+1)),有(frac{n-i}{n})的概率收集到新邮票,花费是(frac{n-i}{n}*(dp[i+1+pd[i+1]+1))。
化简后可得: