• 多目标规划


    • 多目标规划的模型基础:
    1. 正负偏差变量
      即d2+,d2-分别表示决策值超过和未达到目标值的部分。且di+,di-均大于0

    2. 刚性约束和目标约束(柔性目标约束具有偏差)
      多目标规划中,刚性约束中保持>=/<=不变。约束需要变换为柔性约束时,需要把>=/<=改成=(因为已经有了d2+,d2-用来表示正负偏差),并且追加上(+di-di+)这里注意!是+di-,-di+,这是因为需要将目标还原回去,使其最接近原来的刚性约束

    3. 优先因子与权系数
      对于若干个目标,分出主次和轻重缓急

    4. 目标规划的目标函数
      是所有偏差变量的加权和。值得注意的是该加权和均取min值。且每个不同的等级需求中,并不一定di+、di-都出现。具体分析需要具体看题目
      举例如下:
      题目中说设备B既要求充分利用,又尽可能不加班,那么用时间衡量列出的表达式即为:min z=P3(d3- + d3+)之所以这里用+而不是-d3+的原因是:正负偏差不可能同时存在,必有di+di-=0(因为决策值不可能同时大于目标值又小于目标值),又前面是min,所以就取+,让di+和di-都是正值。故引出如下规则:

    • 最后给出例题,并给出对应的解法:

    问题:某企业生产甲、乙两种产品,需要用到 A, B,C 三种设备,关于产品的赢利与使用设备的工时及限制如下表所示。问该企业应如何安排生产,才能达到下列目标:

    ( 1)力求使利润指标不低于 1500 元;
    ( 2)考虑到市场需求,甲、乙两种产品的产量比应尽量保持 1:2;
    ( 3)设备 A 为贵重设备,严格禁止超时使用;
    ( 4)设备C 可以适当加班,但要控制;设备 B 既要求充分利用,又尽可能不加班。
    在重要性上,设备 B 是设备C 的 3 倍。
    建立相应的目标规划模型并求解。
    解:设该企业生产甲乙两种产品的件数分别为 x1, x2 ,相应的目标规划模型为:

    • 下面采用序贯解法,用lingo求解:

    一级目标:

    model:
    sets:
    variable/1..2/:x;!规定变量;
    s_con_num/1..4/:g,dplus,dminus;!软约束条件个数(g的个数=dplus个数=dminus个数)以及需要的相关参数;
    s_con(s_con_num,variable):c;!软约束系数;
    endsets
    data:
    g=1500 0 16 15;
    c=200 300 2 -1 4 0 0 5;
    enddata
    min=dminus(1);!第一个目标函数;!对应min=z中第一小部分;
    2*x(1)+2*x(2)<12;!硬约束;
    @for(s_con_num(i):@sum(variable(j):c(i,j)*x(j))+dminus(i)-dplus(i)=g(i)); !利用设置完毕的数据构建软约束的表达式;
    !软约束表达式;
    @for(variable:@gin(x));!限制变量为整数;
    end
    

    此时,第一目标最优值为0,第一级偏差为0,下面进行第二步:
    二级目标:

    !求得dminus(1)=0,接着求解第二个目标;
    model:
    sets:
    variable/1..2/:x;!规定变量;
    s_con_num/1..4/:g,dplus,dminus;!软约束条件个数以及相关参数;
    s_con(s_con_num,variable):c;!软约束系数;
    endsets
    data:
    g=1500 0 16 15;
    c=200 300 2 -1 4 0 0 5;
    enddata
    min=dminus(2)+dplus(2);!第二个目标函数;
    2*x(1)+2*x(2)<12;!硬约束;
    @for(s_con_num(i):@sum(variable(j):c(i,j)*x(j))+dminus(i)-dplus(i)=g(i));
    !软约束表达式;
    dminus(1)=0;!第一目标结果;
    @for(variable:@gin(x));
    end
    

    此时,第二目标最优值为0,偏差为0,下面进行第三步:
    三级目标:

    !求得dminus(2)=0,接着求解第三个目标;
    model:
    sets:
    variable/1..2/:x;!规定变量;
    s_con_num/1..4/:g,dplus,dminus;!软约束条件个数以及相关参数;
    s_con(s_con_num,variable):c;!软约束系数;
    endsets
    data:
    g=1500 0 16 15;
    c=200 300 2 -1 4 0 0 5;
    enddata
    min=3*dminus(3)+3*dplus(3)+dminus(4);!第三个目标函数;
    2*x(1)+2*x(2)<12;!硬约束;
    @for(s_con_num(i):@sum(variable(j):c(i,j)*x(j))+dminus(i)-dplus(i)=g(i));
    !软约束表达式;
    dminus(1)=0;!第一目标约束;
    dminus(2)+dplus(2)=0;!二级目标约束;
    @for(variable:@gin(x));
    end
    

    最终求得x1=2,x2=4,dplus(1)=100,最优利润为1600

    由于上面的过程需要编写好几个程序,在使用时不方便,下面给出Lingo编写的一个通用程序,在程序中用到数据段未知数据的编程方法。

    !序贯算法的核心就在于按照p的优先级依次视作单目标规划去求解  eg.p1表示优先级为1的,需要第一个计算;
    model:
    sets:
    level/1..3/:p,z,goal;
    variable/1..2/:x;
    h_con_num/1..1/:b;
    s_con_num/1..4/:g,dplus,dminus;
    !以上为建立变量;
    h_con(h_con_num,variable):a;!构建约束;
    s_con(s_con_num,variable):c;!构建约束;
    obj(level,s_con_num)/1 1,2 2,3 3,3 4/:wplus,wminus;!定义P(i)与dplus(i)、dminus(i)之间的系数.其中1 1代表P(1)和dplus(1)、dminus(1)的系数;
    endsets
    data:
    ctr=?;	!?表示需要输入;
    goal=??0;	!因为是一级一级去求偏差的,所以一共三级时,求解到最后一级时只需要输入前两级的最优偏差约束即可,所以goal是??0;
    b=12;
    g=1500 0 16 15;
    a=2 2;
    c=200 300 2 -1 4 0 0 5;
    wplus=0 1 3 1;
    wminus=1 1 3 0;
    enddata
    min=@ sum(level:p*z);	!这个是按照一级一级来求的,因为从该行往下第二行可以发现在求该级目标的时候,其他级的系数均置为了0.;
    p(ctr)=1;	!p是序贯算法中的表示优先级的因子,不是一个系数。所以这里当作系数运算时令为1,详见下一行注释。序贯算法的核心就在于按照p的优先级依次视作单目标规划去求解  eg.p1表示优先级为1的,需要第一个计算;
    @for(level(i)|i#ne#ctr:p(i)=0);!i不等于ctr时,p(i)为0;
    @for(level(i):z(i)=@sum(obj(i,j):wplus(i,j)*dplus(j)+wminus(i,j)*dminus(j)));!构建z(i);
    @for(h_con_num(i):@sum(variable(j):a(i,j)*x(j))<b(i));!第一个刚性约束;
    @for(s_con_num(i):@sum(variable(j):c(i,j)*x(j))+dminus(i)-dplus(i)=g(i));	!柔性约束;
    @for(level(i)|i#lt#@ size(level):@ bnd(0,z(i),goal(i)));	!这里是为了带上之前求出来的级别最优偏差的约束:0=<z(i)<=goal(i);
    end
    

    当程序运行时,会出现一个对话框。
    在做第一级目标计算式,ctr输入1,goal(1),goal(2)输入两个较大的值(goal代表最优偏差),表明这两项约束不起作用。
    求的第一级最优偏差为0,进行第二轮的计算。
    在第二轮的目标运算中,ctr输入2,由于第一级偏差为0,因此goal(1)的输入值为0。
    goal(2)输入一个较大的值,求得第二级的最优偏差仍为0,进行第三级计算。
    在第三级计算中,ctr输入3,由于第一级,第二级偏差均为0,因此goal(1),goal(2)输入值均为0.

    这篇文章,是又一个故事的结束...
    lazy's story is continuing.
  • 相关阅读:
    webpack 打包优化的四种方法(多进程打包,多进程压缩,资源 CDN,动态 polyfill)
    webpack loader实现
    Github配合Jenkins,实现vue等前端项目的自动构建与发布
    vue自定义指令,比onerror更优雅的方式实现当图片加载失败时使用默认图,提供三种方法
    echarts地图边界数据的实时获取与应用,省市区县多级联动【附最新geoJson文件下载】
    小程序webview调用微信扫一扫的“曲折”思路
    Nexus搭建Maven私服中央仓库
    使用Maven进行依赖管理和项目构建
    一、基础项目构建,引入web模块,完成一个简单的RESTful API
    Hession实现远程通讯(基于Binary-RPC协议)
  • 原文地址:https://www.cnblogs.com/Hello-world-hello-lazy/p/15340971.html
Copyright © 2020-2023  润新知