• POJ 3660 Cow Contest [Floyd]


    POJ - 3660 Cow Contest

    http://poj.org/problem?id=3660

    N (1 ≤ N ≤ 100) cows, conveniently numbered 1..N, are participating in a programming contest. As we all know, some cows code better than others. Each cow has a certain constant skill rating that is unique among the competitors.

    The contest is conducted in several head-to-head rounds, each between two cows. If cow A has a greater skill level than cow B (1 ≤ A ≤ N; 1 ≤ B ≤ N; A ≠ B), then cow A will always beat cow B.

    Farmer John is trying to rank the cows by skill level. Given a list the results of M (1 ≤ M ≤ 4,500) two-cow rounds, determine the number of cows whose ranks can be precisely determined from the results. It is guaranteed that the results of the rounds will not be contradictory.

    Input 
    * Line 1: Two space-separated integers: N and M 
    * Lines 2..M+1: Each line contains two space-separated integers that describe the competitors and results (the first integer, A, is the winner) of a single round of competition: A and B

    Output 
    * Line 1: A single integer representing the number of cows whose ranks can be determined 
      
    Sample Input 
    5 5 
    4 3 
    4 2 
    3 2 
    1 2 
    2 5 
    Sample Output 
    2

    这题就是给m个有序对,问这些有序对构成的有向图能确定排名位置的点有几个。

    这题用floyd的最短路去做又快又方便,但是我一直用拓扑排序在写所以就一直在WA。补题后看了网上用拓扑排序的题解,原理就是每次拓扑排序以后将未处理的连在同一点边合并,其实也是用了floyd的思想,但是没有直接用最短路思路清晰,而且要多一步并查集去判断是否是一个联通块。

    最短路做法:

    #include <iostream>
    #include <cstdio>
    #include <cmath>
    #include <cstring>
    #include <algorithm>
    #include <string>
    #include <vector>
    #include <queue>
    #include <stack>
    #include <set>
    #include <map>
    #define INF 0x3f3f3f3f
    #define lowbit(x) (x&(-x))
    using namespace std;
    typedef long long ll;
    
    int w[105][105];
    
    int main()
    {
        int n,m,a,b;
        scanf("%d%d",&n,&m);
        while(m--)
        {
            scanf("%d%d",&a,&b);
            w[a][b] = 1;
        }
    
        for(int i=1;i<=n;i++)
            for(int j=1;j<=n;j++)
                for(int k=1;k<=n;k++)
                    w[j][k] = (w[j][k] > 0 || w[j][i] + w[i][k] == 2);
    
        int res = 0;
    
        for(int i=1;i<=n;i++)
        {
            int tp = 0;
            for(int j=1;j<=n;j++)
                if(w[i][j] || w[j][i]) tp++;
            if(tp == n-1) res++;
        }
        printf("%d
    ",res);
    
    }
  • 相关阅读:
    使用buildbot实现持续集成(转载)
    python 资料
    webdriver(python)学习笔记七——多层框架定位与智能等待
    webdriver(python)学习笔记六——操作测试对象
    webdriver(python)学习笔记五——层级定位
    webdriver(python)学习笔记四——定位一组元素
    keepalived工作原理和配置文件说明
    KeepAlived+MySQL互为主从
    利用keepalived和haproxy配置mysql的高可用负载均衡
    Linux系统安装Apache 2.4.6
  • 原文地址:https://www.cnblogs.com/HazelNut/p/7821069.html
Copyright © 2020-2023  润新知