• 使用keras,手动搭建卷积模型


    #用keras搭建,如下的卷积网络

    ####本文使用keras,搭建卷积模型
    1
    import numpy as np 2 import tensorflow as tensorflow 3 4 from keras.layers import Conv2D, MaxPooling2D, GlobalAveragePooling2D 5 from keras.layers import Dropout, Flatten, Dense 6 from keras.models import Sequential 7 8 #初始化一个模型 9 model = Sequential() 10 11 ### TODO: 定义你的网络架构 12 #卷积层1 13 model.add(Conv2D(filters=16,kernel_size=(3,3),strides=(1,1),padding="same" 14 ,input_shape=(224,224,3),activation="relu")) 15 #最大池化1 16 model.add(MaxPooling2D(pool_size=(2,2))) 17 #丢弃 18 model.add(Dropout(0.5)) 19 20 #卷积层2 21 model.add(Conv2D(filters=32,kernel_size=(3,3),strides=(1,1),padding="same" 22 ,activation="relu")) 23 #最大池化2 24 model.add(MaxPooling2D(pool_size=(2,2))) 25 #丢弃 26 model.add(Dropout(0.5)) 27 28 #卷积层3 29 model.add(Conv2D(filters=64,kernel_size=(3,3),strides=(1,1),padding="same" 30 ,activation="relu")) 31 32 #最大池化3 33 model.add(MaxPooling2D(pool_size=(2,2))) 34 #丢弃 35 model.add(Dropout(0.5)) 36 37 #扁平化,用全区平均池化代替 38 # model.add(Flatten()) 39 40 #全局平均池化 41 model.add(GlobalAveragePooling2D()) 42 #一个全连接层,共133个分类,激活函数使用"softmax" 43 model.add(Dense(133, activation="softmax")) 44 45 ## 编译模型 46 model.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy']) 47 48 #显示模型结构 49 model.summary() 50 51 52 53 ######################################### 54 ##训练模型 55 from keras.callbacks import ModelCheckpoint 56 57 ### TODO: 设置训练模型的epochs的数量 58 59 epochs = 5 60 61 ### 不要修改下方代码 62 63 checkpointer = ModelCheckpoint(filepath='saved_models/weights.best.from_scratch.hdf5', 64 verbose=1, save_best_only=True) 65 66 model.fit(train_tensors, train_targets, 67 validation_data=(valid_tensors, valid_targets), 68 epochs=epochs, batch_size=20, callbacks=[checkpointer], verbose=1) 69 70 71 72 ################################################ 73 74 ## 加载具有最好验证loss的模型 75 model.load_weights('saved_models/weights.best.from_scratch.hdf5') 76 77 78 79 ################################################## 80 81 # 获取测试数据集中每一个图像所预测的狗品种的index 82 dog_breed_predictions = [np.argmax(model.predict(np.expand_dims(tensor, axis=0))) for tensor in test_tensors] 83 84 # 报告测试准确率 85 test_accuracy = 100*np.sum(np.array(dog_breed_predictions)==np.argmax(test_targets, axis=1))/len(dog_breed_predictions) 86 print('Test accuracy: %.4f%%' % test_accuracy)
  • 相关阅读:
    企业大数据战略规划高级培训课程
    大数据工具篇之flume1.4-安装部署指南
    大数据工具篇之Hive与MySQL整合完整教程
    通用网络信息采集器(爬虫)设计方案
    大数据导论之为何需要引入大数据
    招募贴:Hadoop专业解决方案招募义务翻译人员
    Hadoop文件系统支持释疑之S3
    [转]WPF入口Application
    Host 'XXX' is not allowed to connect to this MySQL server 解决方案/如何开启MySQL的远程帐号
    Linq To EF (添加记录后获取添加的自增ID和叫“ID”的列不是自增列不让插入的问题)
  • 原文地址:https://www.cnblogs.com/HL-blog/p/9390184.html
Copyright © 2020-2023  润新知