• 缓解过拟合


    1.欠拟合与过拟合的解决办法

                                              

     

     

     

     案例:

    实现拟合

    (1)不加入正则化

    轮廓不够平滑,存在过拟合

    #! /usr/bin/env python
    # -*- coding:utf-8 -*-
    
    import tensorflow as tf
    from matplotlib import pyplot as plt
    import numpy as np
    import pandas as pd
    
    # 读入数据/标签,生成x_train, y_train
    df = pd.read_csv('./datasets/dot.csv')
    x_data = np.array(df[['x1', 'x2']])
    y_data = np.array(df['y_c'])
    
    x_train = np.vstack(x_data).reshape([-1, 2])
    y_train = np.vstack(y_data).reshape([-1, 1])
    
    Y_c = [['red' if y else 'blue'] for y in y_train]
    
    # 转换x的数据类型,否则后面矩阵相乘时会因数据类型问题报错
    x_train = tf.cast(x_train, tf.float32)
    y_train = tf.cast(y_train, tf.float32)
    
    # from_tensor_slices函数切分传入的张量的第一个维度,生成相应的数据集,使输入特征和标签值一一对应
    train_db = tf.data.Dataset.from_tensor_slices((x_train, y_train)).batch(32)
    print(train_db)
    
    # 生成神经网络的参数,输入层为2个神经元,隐藏层为11个神经元,1层隐藏层,输出层为1个神经元
    # 用tf.Variable()保证参数可训练
    w1 = tf.Variable(tf.random.normal([2, 11], dtype=tf.float32))
    b1 = tf.Variable(tf.constant(0.01, shape=[11]))
    
    w2 = tf.Variable(tf.random.normal([11, 1], dtype=tf.float32))
    b2 = tf.Variable(tf.constant(0.01, shape=[1]))
    
    # 设置学习率
    lr = 0.005
    # 设置循环轮数
    epochs = 800
    
    # 训练部分
    for epoch in range(epochs):
        for step, (x_train, y_train) in enumerate(train_db):
            with tf.GradientTape() as tape:  # 记录梯度信息
                # 记录神经网络乘加运算
                h1 = tf.matmul(x_train, w1) + b1
                # 经过激活函数reLu
                h1 = tf.nn.relu(h1)
                # 计算输出y
                y = tf.matmul(h1, w2) + b2
    
                # 采用均方误差损失函数mse = mean(sum(y-out)^2)
                loss = tf.reduce_mean(tf.square(y_train - y))
    
            # 计算loss 对各个参数的梯度
            variables = [w1, b1, w2, b2]
            grads = tape.gradient(loss, variables)
    
            # 实现梯度更新
            # w1 = w1 - lr * w1_grad tape.gradient是自动求导结果与[w1, b1, w2, b2] 索引为0,1,2,3
            w1.assign_sub(lr*grads[0])
            b1.assign_sub(lr*grads[1])
            w2.assign_sub(lr*grads[2])
            b2.assign_sub(lr*grads[3])
    
        # 每20个epoch,打印loss
        if epoch % 20 == 0:
            print('epoch:', epoch, 'loss:', float(loss))
    
    ##################### 预测 ##############################
    print('******************predict*********************')
    
    # xx在-3到3之间以步长为0.1,yy在-3到3之间以步长为0.1,生成间隔数值点
    xx, yy = np.mgrid[-3:3:.1, -3:3:.1]
    print('xx.shape:', xx.shape)
    # 将xx, yy拉直,并合并配对为二维张量,生成二维坐标点
    grid = np.c_[xx.ravel(), yy.ravel()]
    grid = tf.cast(grid, tf.float32)
    
    # 将网格坐标点喂入神经网络,进行预测,probs为输出
    probs = []
    for x_test in grid:
        # 使用训练好的参数进行预测
        h1 = tf.matmul([x_test], w1) + b1
        h1 = tf.nn.relu(h1)
        y = tf.matmul(h1, w2) + b2
        probs.append(y)
    
    # 取第0列给x1,取第1列给x2
    x1 = x_data[:, 0]
    x2 = x_data[:, 1]
    # probs的shape调整成xx的样子
    probs = np.array(probs).reshape(xx.shape)
    # squeeze去掉纬度是1的纬度,相当于去掉[['red'],[''blue]],内层括号变为['red','blue']
    plt.scatter(x1, x2, color=np.squeeze(Y_c))
    # 把坐标xx yy和对应的值probs放入contour函数,给probs值为0.5的所有点上色  plt.show()后 显示的是红蓝点的分界线
    plt.contour(xx, yy, probs, levels=[.5])
    plt.show()
    

      (2)加入L2正则化

    #! /usr/bin/env python
    # -*- coding:utf-8 -*-
    
    import tensorflow as tf
    from matplotlib import pyplot as plt
    import numpy as np
    import pandas as pd
    
    # 读入数据/标签,生成x_train, y_train
    df = pd.read_csv('./datasets/dot.csv')
    x_data = np.array(df[['x1', 'x2']])
    y_data = np.array(df['y_c'])
    
    x_train = np.vstack(x_data).reshape([-1, 2])
    y_train = np.vstack(y_data).reshape([-1, 1])
    
    Y_c = [['red' if y else 'blue'] for y in y_train]
    
    # 转换x的数据类型,否则后面矩阵相乘时会因数据类型问题报错
    x_train = tf.cast(x_train, tf.float32)
    y_train = tf.cast(y_train, tf.float32)
    
    # from_tensor_slices函数切分传入的张量的第一个维度,生成相应的数据集,使输入特征和标签值一一对应
    train_db = tf.data.Dataset.from_tensor_slices((x_train, y_train)).batch(32)
    print(train_db)
    
    # 生成神经网络的参数,输入层为2个神经元,隐藏层为11个神经元,1层隐藏层,输出层为1个神经元
    # 用tf.Variable()保证参数可训练
    w1 = tf.Variable(tf.random.normal([2, 11], dtype=tf.float32))
    b1 = tf.Variable(tf.constant(0.01, shape=[11]))
    
    w2 = tf.Variable(tf.random.normal([11, 1], dtype=tf.float32))
    b2 = tf.Variable(tf.constant(0.01, shape=[1]))
    
    # 设置学习率
    lr = 0.005
    # 设置循环轮数
    epochs = 800
    
    # 训练部分
    for epoch in range(epochs):
        for step, (x_train, y_train) in enumerate(train_db):
            with tf.GradientTape() as tape:  # 记录梯度信息
                # 记录神经网络乘加运算
                h1 = tf.matmul(x_train, w1) + b1
                # 经过激活函数reLu
                h1 = tf.nn.relu(h1)
                # 计算输出y
                y = tf.matmul(h1, w2) + b2
    
                # 采用均方误差损失函数mse = mean(sum(y-out)^2)
                loss_mse = tf.reduce_mean(tf.square(y_train - y))
                # 添加l2正则化
                loss_regularization = []
                # tf.nn.l2_loss(w)=sum(w ** 2) / 2
                loss_regularization.append(tf.nn.l2_loss(w1))
                loss_regularization.append(tf.nn.l2_loss(w2))
                loss_regularization = tf.reduce_sum(loss_regularization)
                # REGULARIZER = 0.03
                loss = loss_mse + 0.03 * loss_regularization
    
            # 计算loss 对各个参数的梯度
            variables = [w1, b1, w2, b2]
            grads = tape.gradient(loss, variables)
    
            # 实现梯度更新
            # w1 = w1 - lr * w1_grad tape.gradient是自动求导结果与[w1, b1, w2, b2] 索引为0,1,2,3
            w1.assign_sub(lr*grads[0])
            b1.assign_sub(lr*grads[1])
            w2.assign_sub(lr*grads[2])
            b2.assign_sub(lr*grads[3])
    
        # 每20个epoch,打印loss
        if epoch % 20 == 0:
            print('epoch:', epoch, 'loss:', float(loss))
    
    ##################### 预测 ##############################
    print('******************predict*********************')
    
    # xx在-3到3之间以步长为0.1,yy在-3到3之间以步长为0.1,生成间隔数值点
    xx, yy = np.mgrid[-3:3:.1, -3:3:.1]
    print('xx.shape:', xx.shape)
    # 将xx, yy拉直,并合并配对为二维张量,生成二维坐标点
    grid = np.c_[xx.ravel(), yy.ravel()]
    grid = tf.cast(grid, tf.float32)
    
    # 将网格坐标点喂入神经网络,进行预测,probs为输出
    probs = []
    for x_test in grid:
        # 使用训练好的参数进行预测
        h1 = tf.matmul([x_test], w1) + b1
        h1 = tf.nn.relu(h1)
        y = tf.matmul(h1, w2) + b2
        probs.append(y)
    
    # 取第0列给x1,取第1列给x2
    x1 = x_data[:, 0]
    x2 = x_data[:, 1]
    # probs的shape调整成xx的样子
    probs = np.array(probs).reshape(xx.shape)
    # squeeze去掉纬度是1的纬度,相当于去掉[['red'],[''blue]],内层括号变为['red','blue']
    plt.scatter(x1, x2, color=np.squeeze(Y_c))
    # 把坐标xx yy和对应的值probs放入contour函数,给probs值为0.5的所有点上色  plt.show()后 显示的是红蓝点的分界线
    plt.contour(xx, yy, probs, levels=[.5])
    plt.show()
    

      

  • 相关阅读:
    jQuery Event.delegateTarget 属性详解
    velocity 判断 变量 是否不是空或empty
    触碰jQuery:AJAX异步详解
    jQuery Select操作大集合
    常用元素默认margin和padding值问题探讨
    九大排序算法再总结
    八大排序算法
    JavaScript中toStirng()与Object.prototype.toString.call()方法浅谈
    使用CSS3的appearance属性改变元素的外观
    CSS清浮动处理(Clear与BFC)
  • 原文地址:https://www.cnblogs.com/GumpYan/p/13582328.html
Copyright © 2020-2023  润新知