• 2018 ACM-ICPC 中国大学生程序设计竞赛线上赛 H题 Rock Paper Scissors Lizard Spock.(FFT字符串匹配)


    2018 ACM-ICPC 中国大学生程序设计竞赛线上赛:https://www.jisuanke.com/contest/1227

    题目链接:https://nanti.jisuanke.com/t/26219

    Rock Paper Scissors Lizard Spock

    Description:

    Didi is a curious baby. One day, she finds a curious game, which named Rock Paper Scissors Lizard Spock.

    The game is an upgraded version of the game named Rock, Paper, Scissors. Each player chooses an option . And then those players show their choices that was previously hidden at the same time. If the winner defeats the others, she gets a point.

    The rules are as follows. 

    Scissors cuts Paper

    Paper covers Rock

    Rock crushes Lizard

    Lizard poisons Spock

    Spock smashes Scissors

    Scissors decapitates Lizard

    Lizard eats Paper

    Paper disproves Spock

    Spock vaporizes Rock

    (and as it always has) Rock crushes Scissors.

    (this pic is from baike.baidu.com)

    But Didi is a little silly, she always loses the game. In order to keep her calm, her friend Tangtang writes down the order on a list and show it to her. Didi also writes down her order on another list, like

    .

    (Rock-R Paper-P Scissors-S Lizard-L Spock-K)

    However, Didi may skip some her friends' choices to find the position to get the most winning points of the game, like

     

    Can you help Didi find the max points she can get?

    Input:

    The first line contains the list of choices of Didi's friend, the second line contains the list of choices of Didi.

    (1<=len(s2)<=len(s1)<=1e6)

    Output:

    One line contains an integer indicating the maximum number of wining point.

    忽略每行输出的末尾多余空格

    样例输入1

    RRRRRRRRRLLL
    RRRS

    样例输出1

    3

    样例输入2

    RSSPKKLLRKPS
    RSRS

    样例输出2

    2
    ACM-ICPC Asia Training League   宁夏理工学院

    题解:

    因为之前做过codeforces 528D. Fuzzy Search  ,感觉就不难了,你要是不会这题可以先去做cf528d,有个详细的题解:https://blog.csdn.net/u013368721/article/details/45565729

    【FFT求字符串匹配的问题一般都是将模式串反转,然后将其与主串进行卷积运算】

    枚举五种出拳方式,每种都做fft,最后扫一遍最大值即可求出最佳匹配出的赢的最大次数。(具体fft原理不懂orz,我就是套着原来板子写的...)

    #include<bits/stdc++.h>
    #define CLR(a,b) memset((a),(b),sizeof((a)))
    using namespace std;
    typedef long long ll;
    const int N = 1<<20;
    const double PI = acos(-1.0);
    int n, m;
    struct Complex {
        double x,y;
        Complex(double _x = 0.0,double _y = 0.0){
            x = _x; y = _y;
        }
        Complex operator -(const Complex &b)const{
            return Complex(x-b.x,y-b.y);
        }
        Complex operator +(const Complex &b)const{
            return Complex(x+b.x,y+b.y);
        }
        Complex operator *(const Complex &b)const{
            return Complex(x*b.x-y*b.y,x*b.y+y*b.x);
        }
        Complex operator * (const double &b)const{
            return Complex(x * b,y * b);
        }
        Complex operator / (const double &b)const{
            return Complex(x / b,y / b);
        }
    };
    void change(Complex y[], int len) {
        int i, j, k;
        for(i = 1, j = len/2;i <len-1;i++) {
            if(i < j)swap(y[i],y[j]);
            k = len/2;
            while(j >= k) {
                j -= k;
                k /= 2;
            }
            if(j < k) j += k;
        }
    }
    void fft(Complex y[],int len,int on) {
        change(y,len);
        for(int h = 2; h <= len; h <<= 1) {
            Complex wn(cos(-on*2*PI/h),sin(-on*2*PI/h));
            for(int j = 0;j < len;j+=h) {
                Complex w(1,0);
                for(int k = j;k < j+h/2;k++) {
                    Complex u = y[k];
                    Complex t = w*y[k+h/2];
                    y[k] = u+t;
                    y[k+h/2] = u-t;
                    w = w*wn;
                }
            }
        }
        if(on == -1)
            for(int i = 0;i < len;i++)
                y[i].x /= len;
    }
    Complex a[N], b[N], c[N];
    char s[N], t[N];
    int sum[N];
    int main() {
        int i, j, ans = 0, ma, nn;
        scanf("%s %s", s, t);
        n = strlen(s);
        m = strlen(t);
        reverse(t, t+m);
        ma = max(n, m);  nn = 1;
        while(nn < 2 * ma) nn<<=1;
        CLR(c, 0); CLR(sum, 0);
        //R vs L S
        CLR(a, 0); CLR(b, 0);
        for(i = 0; i < n; ++i) a[i].x = (s[i]=='L'||s[i]=='S');
        for(i = 0; i < m; ++i) b[i].x = (t[i]=='R');
        fft(a, nn, 1); fft(b, nn, 1);
        for(i = 0; i < nn ;++i) c[i] = a[i] * b[i];
        fft(c, nn, -1);
        for(i = m-1; i < n; ++i)
            sum[i] += (int)(c[i].x+0.5);
        //P vs R K
        CLR(a, 0); CLR(b, 0);
        for(i = 0; i < n; ++i) a[i].x = (s[i]=='R'||s[i]=='K');
        for(i = 0; i < m; ++i) b[i].x = (t[i]=='P');
        fft(a, nn, 1); fft(b, nn, 1);
        for(i = 0; i < nn ;++i) c[i] = a[i] * b[i];
        fft(c, nn, -1);
        for(i = m-1; i < n; ++i)
            sum[i] += (int)(c[i].x+0.5);
        //S vs P L
        CLR(a, 0); CLR(b, 0);
        for(i = 0; i < n; ++i) a[i].x = (s[i]=='P'||s[i]=='L');
        for(i = 0; i < m; ++i) b[i].x = (t[i]=='S');
        fft(a, nn, 1); fft(b, nn, 1);
        for(i = 0; i < nn ;++i) c[i] = a[i] * b[i];
        fft(c, nn, -1);
        for(i = m-1; i < n; ++i)
            sum[i] += (int)(c[i].x+0.5);
        //L vs P K
        CLR(a, 0); CLR(b, 0);
        for(i = 0; i < n; ++i) a[i].x = (s[i]=='P'||s[i]=='K');
        for(i = 0; i < m; ++i) b[i].x = (t[i]=='L');
        fft(a, nn, 1); fft(b, nn, 1);
        for(i = 0; i < nn ;++i) c[i] = a[i] * b[i];
        fft(c, nn, -1);
        for(i = m-1; i < n; ++i)
            sum[i] += (int)(c[i].x+0.5);
        //K vs R S
        CLR(a, 0); CLR(b, 0);
        for(i = 0; i < n; ++i) a[i].x = (s[i]=='R'||s[i]=='S');
        for(i = 0; i < m; ++i) b[i].x = (t[i]=='K');
        fft(a, nn, 1); fft(b, nn, 1);
        for(i = 0; i < nn ;++i) c[i] = a[i] * b[i];
        fft(c, nn, -1);
        for(i = m-1; i < n; ++i)
            sum[i] += (int)(c[i].x+0.5);
        for(i = m-1; i < n; ++i) ans = max(ans, sum[i]);
        printf("%d
    ", ans);
        return 0;
    }
  • 相关阅读:
    Java从入门到精通——调错篇之ORACLE 打开PLSQL时提示ora-01033
    2012年——2013年总结
    一个订单相关的存储过程(MySQL)
    EHCache 实现通用类 CacheManager
    超越算法来看待个性化推荐
    Jackson怎样转换这样的字符串? String jsonStr = "{dataType:'Custom',regexp:'t\d+',msg:'输入不正确'}";
    实时个性化推荐系统简述
    Java从入门到精通——基础篇之Servlet与JSP的区别
    TIME_WAIT引起Cannot assign requested address报错
    synchronized 用法,实例讲解
  • 原文地址:https://www.cnblogs.com/GraceSkyer/p/8921703.html
Copyright © 2020-2023  润新知