• Codeforces Round #432 Div. 1


      A:大胆猜想合法点不会很多,于是暴力检验,一旦发现不合法就break,可以random_shuffle一下。

    #include<iostream> 
    #include<cstdio>
    #include<cmath>
    #include<ctime>
    #include<cstdlib>
    #include<cstring>
    #include<algorithm>
    using namespace std;
    #define ll long long
    #define N 1010
    char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;}
    int gcd(int n,int m){return m==0?n:gcd(m,n%m);}
    int read()
    {
    	int x=0,f=1;char c=getchar();
    	while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();}
    	while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar();
    	return x*f;
    }
    int n,ans[N],cnt;
    struct data{int x[5],i;
    }a[N];
    signed main()
    {
    #ifndef ONLINE_JUDGE
    	freopen("a.in","r",stdin);
    	freopen("a.out","w",stdout);
    #endif
    	n=read();
    	for (int i=1;i<=n;i++)
    	{
    		a[i].i=i;
    		for (int j=0;j<5;j++) a[i].x[j]=read();
    	}
    	srand(time(0));
    	random_shuffle(a+1,a+n+1);
    	for (int i=1;i<=n;i++)
    	{
    		for (int j=1;j<=n;j++)
    			for (int k=1;k<j;k++)
    			{
    				int s=0;
    				for (int x=0;x<5;x++) s+=(a[j].x[x]-a[i].x[x])*(a[k].x[x]-a[i].x[x]);
    				if (s>0) goto out;
    			}
    		ans[++cnt]=a[i].i;
    		out:;
    	}
    	cout<<cnt<<endl;
    	sort(ans+1,ans+cnt+1);
    	for (int i=1;i<=cnt;i++) cout<<ans[i]<<' ';
    	return 0;
    	//NOTICE LONG LONG!!!!!
    }
    

      B:暴力的想法是枚举最后所有数的gcd的某个质因子。于是考虑乱搞,先求出每个质数是多少个数的公共因子,显然可以得到只删数的最优答案;并且注意到要使所有数都变成偶数需要的代价不会超过nY看起来很优秀,于是对其也先算一下。然后按照出现次数从大到小枚举每个质数,如果(n-cnt)*Y都不优于当前答案就不进行暴力检验。复杂度玄学。

    #include<iostream> 
    #include<cstdio>
    #include<cmath>
    #include<ctime>
    #include<cstdlib>
    #include<cstring>
    #include<algorithm>
    using namespace std;
    #define ll long long
    #define N 500010
    char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;}
    int gcd(int n,int m){return m==0?n:gcd(m,n%m);}
    int read()
    {
    	int x=0,f=1;char c=getchar();
    	while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();}
    	while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar();
    	return x*f;
    }
    int n,X,Y,a[N],p[N<<1],prime[N],c[N<<1],id[N<<1],cnt;
    bool flag[N<<1];
    ll ans=0;
    bool cmp(const int&a,const int&b)
    {
    	return c[a]>c[b];
    }
    ll calc(int p)
    {
    	ll s=0;
    	for (int i=1;i<=n;i++) s+=min(1ll*X,1ll*(p-a[i]%p)%p*Y);
    	return s;
    }
    signed main()
    {
    #ifndef ONLINE_JUDGE
    	freopen("a.in","r",stdin);
    	freopen("a.out","w",stdout);
    #endif
    	n=read(),X=read(),Y=read();
    	for (int i=1;i<=n;i++) a[i]=read();
    	flag[1]=1;
    	for (int i=2;i<=1000000;i++)
    	{
    		if (!flag[i]) prime[++cnt]=i,p[i]=i;
    		for (int j=1;j<=cnt&&prime[j]*i<=1000000;j++)
    		{
    			flag[prime[j]*i]=1;
    			p[prime[j]*i]=prime[j];
    			if (i%prime[j]==0) break;
    		}
    	}
    	for (int i=1;i<=n;i++) 
    	{
    		int u=a[i],P[40],t=0;
    		while (u>1) P[++t]=p[u],u/=p[u];
    		sort(P+1,P+t+1);
    		t=unique(P+1,P+t+1)-P-1;
    		for (int j=1;j<=t;j++) c[P[j]]++;
    	}
    	for (int i=1;i<=cnt;i++) id[i]=prime[i];
    	sort(id+1,id+cnt+1,cmp);
    	ans=1ll*X*(n-c[id[1]]);
    	ans=min(ans,calc(2));
    	for (int i=1;i<=cnt;i++)
    	if (1ll*Y*(n-c[id[i]])<ans) ans=min(ans,calc(id[i]));
    	cout<<ans;
    	return 0;
    	//NOTICE LONG LONG!!!!!
    }
    

      C:显然每个质因子是不相关的独立游戏。对于每一个质因子,当前状态只与各幂次是否出现有关。容易想到计算sg函数找找规律,发现非常困难,于是直接每次暴力算sg就过了。复杂度不会证。

    #include<iostream> 
    #include<cstdio>
    #include<cmath>
    #include<ctime>
    #include<cstdlib>
    #include<cstring>
    #include<algorithm>
    #include<map>
    using namespace std;
    #define ll long long
    #define N 10010
    char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;}
    int gcd(int n,int m){return m==0?n:gcd(m,n%m);}
    int read()
    {
    	int x=0,f=1;char c=getchar();
    	while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();}
    	while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar();
    	return x*f;
    }
    int n,T,a[N];
    map<int,int> id,f;
    int dfs(int k)
    {
    	if (f.find(k)!=f.end()) return f[k];
    	if (k==0) return 0;
    	int u[32],t=0;
    	for (int i=0;i<31;i++)
    	if (k>=(1<<i)) u[++t]=dfs((k>>i+1)|(k&(1<<i)-1));
    	for (int i=0;i<=t;i++)
    	{
    		for (int j=1;j<=t;j++)
    		if (u[j]==i) goto out;
    		return f[k]=i;
    		out:;
    	}
    }
    signed main()
    {
    #ifndef ONLINE_JUDGE
    	freopen("a.in","r",stdin);
    	freopen("a.out","w",stdout);
    #endif
    	n=read();
    	for (int i=1;i<=n;i++)
    	{
    		int x=read();
    		for (int j=2;j*j<=x;j++)
    		if (x%j==0)
    		{
    			int t=0;
    			while (x%j==0) t++,x/=j;
    			if (id.find(j)==id.end()) id[j]=++T;
    			a[id[j]]|=1<<t-1;
    		}
    		if (x>1)
    		{
    			if (id.find(x)==id.end()) id[x]=++T;
    			a[id[x]]|=1;
    		}
    	}
    	int ans=0;
    	for (int i=1;i<=T;i++) ans^=dfs(a[i]);
    	if (ans==0) cout<<"Arpa";else cout<<"Mojtaba";
    	return 0;
    	//NOTICE LONG LONG!!!!!
    }
    

      D:考虑求出最少要多少个点。首先发现这个东西如果有解(事实上由paper得一定有解)点数不会超过61,由所有点度数之和的限制显然可得。容易想到设f[i][j][k]表示前i个数选了j个点其度数和为k是否合法,暴力O(m4),bitset优化O(m3)。由dp数组即可求出点数并还原出一组合法方案。然后考虑构造,每次删去度数最大的点,考虑哪些点赢了它(即让这些点度数-1),显然为了满足定理的条件,应该修改度数较大的点。

    #include<iostream> 
    #include<cstdio>
    #include<cmath>
    #include<ctime>
    #include<cstdlib>
    #include<cstring>
    #include<algorithm>
    #include<bitset> 
    using namespace std;
    #define ll long long
    #define N 32
    char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;}
    int gcd(int n,int m){return m==0?n:gcd(m,n%m);}
    int read()
    {
    	int x=0,f=1;char c=getchar();
    	while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();}
    	while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar();
    	return x*f;
    }
    int n,m,a[N],b[N*N],ans[N*2][N*2],t;
    bitset<N*N*2> f[N][N*2];
    struct data
    {
    	int x,i;
    	bool operator <(const data&a) const
    	{
    		return x<a.x;
    	}
    }c[N*2]; 
    void get(int m,int n,int d)
    {
    	if (m==0) return;
    	for (int i=1;;i++)
    	if (f[m-1][n-i][d-a[m]*i])
    	{
    		get(m-1,n-i,d-a[m]*i);
    		for (int j=1;j<=i;j++) b[++t]=a[m];
    		return ;
    	}
    }
    void make()
    {
    	for (int i=1;i<=n;i++) c[i].x=b[i],c[i].i=i;
    	for (int i=n;i>=1;i--)
    	{
    		for (int j=i-1;j>=i-(i-1-c[i].x);j--)
    		{
    			ans[c[j].i][c[i].i]=1;
    			c[j].x--;
    		}
    		for (int j=i-1-(i-1-c[i].x);j>=1;j--) ans[c[i].i][c[j].i]=1;
    		sort(c+1,c+i);
    	}
    }
    signed main()
    {
    #ifndef ONLINE_JUDGE
    	freopen("a.in","r",stdin);
    	freopen("a.out","w",stdout);
    #endif
    	m=read();
    	for (int i=1;i<=m;i++) a[i]=read();
    	sort(a+1,a+m+1);
    	f[0][0][0]=1;
    	for (int i=1;i<=m;i++)
    		for (int j=i;j<=62;j++)
    		{
    			f[i][j]|=f[i-1][j-1]<<a[i];
    			f[i][j]|=f[i][j-1]<<a[i];
    			f[i][j]=(f[i][j]>>(j*(j-1)/2))<<(j*(j-1)/2);
    			//cout<<i<<' '<<j<<' '<<f[i][j]<<endl;
    		}
    	for (int i=m;i<=62;i++)
    	if (f[m][i][i*(i-1)/2]) {n=i;break;}
    	if (!n) {cout<<"=(";return 0;}
    	get(m,n,n*(n-1)/2);
    	cout<<n<<endl;
    	make();
    	for (int i=1;i<=n;i++)
    	{
    		for (int j=1;j<=n;j++)
    		cout<<ans[i][j];
    		cout<<endl;
    	}
    	return 0;
    	//NOTICE LONG LONG!!!!!
    }
    

      E:不妨令第一个人取胜,设其两次获胜的状态分别为x和y,考虑每个变量,如果x和y在该位相同,其他两人的顺位可以任取,否则固定。容易发现这样的方案数即为2n-popcount(x^y)。求出每种异或值出现多少次即可,裸的FWT。

    #include<iostream> 
    #include<cstdio>
    #include<cmath>
    #include<ctime>
    #include<cstdlib>
    #include<cstring>
    #include<algorithm>
    #include<bitset> 
    using namespace std;
    #define ll long long
    #define N 21
    #define P 1000000007
    #define inv2 500000004
    char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;}
    int gcd(int n,int m){return m==0?n:gcd(m,n%m);}
    int read()
    {
    	int x=0,f=1;char c=getchar();
    	while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();}
    	while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar();
    	return x*f;
    }
    int n,a[1<<N],p[N],ans;
    char s[1<<N];
    void FWT(int n,int *a,int op)
    {
    	for (int i=2;i<=n;i<<=1)
    		for (int j=0;j<n;j+=i)
    			for (int k=j;k<j+(i>>1);k++)
    			{
    				int x=a[k],y=a[k+(i>>1)];
    				a[k]=(x+y)%P,a[k+(i>>1)]=(x-y+P)%P;
    				if (op==1) a[k]=1ll*a[k]*inv2%P,a[k+(i>>1)]=1ll*a[k+(i>>1)]*inv2%P;
    			}
    }
    signed main()
    {
    #ifndef ONLINE_JUDGE
    	freopen("a.in","r",stdin);
    	freopen("a.out","w",stdout);
    #endif
    	n=read();scanf("%s",s);
    	for (int i=0;i<(1<<n);i++) a[i]=s[i]-'0';
    	FWT(1<<n,a,0);
    	for (int i=0;i<(1<<n);i++) a[i]=1ll*a[i]*a[i]%P;
    	FWT(1<<n,a,1);
    	for (int i=0;i<(1<<n);i++)
    	{
    		int u=n,j=i;
    		while (j) j^=j&-j,u--;
    		ans=(ans+1ll*a[i]*(1<<u))%P;
    	}
    	cout<<3ll*ans%P;
    	return 0;
    	//NOTICE LONG LONG!!!!!
    }
    

      F:考虑枚举最后变成了那个球。这样就只需要考虑只有两种球的情况了。于是我们要计算变成该球的概率*变成该球的期望步数(当然过程中该球不能全部消失)。显然相当于在数轴上随机游走。设f[i]为该球有i个时的上述值。不妨设p=i*(m-i)/m/(m-1),即颜色发生改变的概率。有f[i]=f[i+1]*p+f[i-1]*p+f[i]*(1-2p)+i/m。最后一项不是1,因为我们只对变成该球的情况计算步数,而由众所周知的结论这个概率是i/m,所以在该点走一步产生的贡献是i/m。然后只要得到f[1]就能递推出整个数列,打表或推式子可得f[1]=(m-1)2/m。最后累加所有f[ai]即可。

    #include<iostream> 
    #include<cstdio>
    #include<cmath>
    #include<ctime>
    #include<cstdlib>
    #include<cstring>
    #include<algorithm>
    #include<bitset> 
    using namespace std;
    #define ll long long
    #define P 1000000007
    #define N 2510
    char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;}
    int gcd(int n,int m){return m==0?n:gcd(m,n%m);}
    int read()
    {
    	int x=0,f=1;char c=getchar();
    	while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();}
    	while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar();
    	return x*f;
    }
    int n,m,u,a[N],f[100010];
    int ksm(int a,int k)
    {
    	int s=1;
    	for (;k;k>>=1,a=1ll*a*a%P) if (k&1) s=1ll*s*a%P;
    	return s;
    }
    int inv(int a){return ksm(a,P-2);}
    signed main()
    {
    #ifndef ONLINE_JUDGE
    	freopen("a.in","r",stdin);
    	freopen("a.out","w",stdout);
    #endif
    	n=read();
    	for (int i=1;i<=n;i++) m+=a[i]=read(),u=max(u,a[i]);
    	f[1]=1ll*(m-1)*(m-1)%P*inv(m)%P;
    	for (int i=2;i<=u;i++) f[i]=((2*f[i-1]-f[i-2]-1ll*(m-1)*inv(m-i+1))%P+P)%P;
    	int ans=0;
    	for (int i=1;i<=n;i++) ans=(ans+f[a[i]])%P;
    	cout<<ans;
    	return 0;
    	//NOTICE LONG LONG!!!!!
    }
    

      

  • 相关阅读:
    【Prince2科普】Prince2七大主题之概论
    浅谈PRINCE2和PMP体系架构有何区别?
    Prince2是怎么考试的?
    Reporting Service服务SharePoint集成模式安装配置(3、4、安装sharepoint 2010必备组件及产品)
    Reporting Service服务SharePoint集成模式安装配置(1、虚拟机+ 2、AD域环境配置)
    DB2 添加license
    db2中临时表在存储过程中的使用
    DB2 函数快速构造测试数据
    db2 中 SQL判断物理表是否存在、修改表名
    DB2触发器简单例子
  • 原文地址:https://www.cnblogs.com/Gloid/p/10492879.html
Copyright © 2020-2023  润新知