• Codeforces Round #483 Div. 1


      A:首先将p和q约分。容易发现相当于要求存在k满足bk mod q=0,也即b包含q的所有质因子。当然不能直接分解质因数,考虑每次给q除掉gcd(b,q),若能将q除至1则说明合法。但这个辣鸡题卡常,每求一次gcd都除干净就可以了。

    #include<iostream> 
    #include<cstdio>
    #include<cmath>
    #include<cstdlib>
    #include<cstring>
    #include<algorithm>
    using namespace std;
    #define ll long long
    char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;}
    ll gcd(ll n,ll m){return m==0?n:gcd(m,n%m);}
    ll read()
    {
    	ll x=0,f=1;char c=getchar();
    	while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();}
    	while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar();
    	return x*f;
    }
    int n;
    ll p,q,b;
    signed main()
    {
    #ifndef ONLINE_JUDGE
    	freopen("a.in","r",stdin);
    	freopen("a.out","w",stdout);
    #endif
    	n=read();
    	while (n--)
    	{
    		p=read(),q=read(),b=read();
    		q/=gcd(p,q);
    		ll u=gcd(b,q);
    		while (u>1&&q>1)
    		{
    			while (q%u==0) q/=u;
    			u=gcd(b,q);
    		}
    		if (q==1) puts("Finite");else puts("Infinite");
    	}
    	return 0;
    	//NOTICE LONG LONG!!!!!
    }
    

      B:先考虑求出每个区间的f值。可以发现若区间长度为x,对于区间内第i个元素,其对最后答案是否产生贡献仅与C(x,i)是否为奇数有关。直接计算仍然是O(n3)的,由于C(i,j)=C(i-1,j-1)+C(i-1,j),f值我们也可以类似地递推得到,即f[i][j]=f[i+1][j]^f[i][j-1],考虑其中每个元素被计算的次数容易证明。然后再预处理正方形最大值,同样递推一下即可。于是就O(1)回答询问了。

    #include<iostream> 
    #include<cstdio>
    #include<cmath>
    #include<cstdlib>
    #include<cstring>
    #include<algorithm>
    using namespace std;
    #define ll long long
    #define N 5010
    char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;}
    ll gcd(ll n,ll m){return m==0?n:gcd(m,n%m);}
    ll read()
    {
    	ll x=0,f=1;char c=getchar();
    	while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();}
    	while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar();
    	return x*f;
    }
    int n,q,a[N],f[N][N],ans[N][N];
    signed main()
    {
    #ifndef ONLINE_JUDGE
    	freopen("b.in","r",stdin);
    	freopen("b.out","w",stdout);
    #endif
    	n=read();
    	for (int i=1;i<=n;i++) a[i]=read();
    	for (int i=1;i<=n;i++) ans[i][i]=f[i][i]=a[i];
    	for (int i=2;i<=n;i++)
    		for (int j=1;j<=n-i+1;j++)
    		f[j][j+i-1]=f[j][j+i-2]^f[j+1][j+i-1];
    	for (int i=2;i<=n;i++)
    		for (int j=1;j<=n-i+1;j++)
    		ans[j][j+i-1]=max(max(ans[j][j+i-2],ans[j+1][j+i-1]),f[j][j+i-1]);
    	q=read();
    	for (int i=1;i<=q;i++)
    	{
    		int l=read(),r=read();
    		printf("%d
    ",ans[l][r]);
    	}
    	return 0;
    	//NOTICE LONG LONG!!!!!
    }
    

      C:f[i][j][k]表示当前已经i个人进入过电梯,电梯在第j层,电梯内的人要到达的楼层状态为k,连边bfs即可。

    #include<iostream> 
    #include<cstdio>
    #include<cmath>
    #include<cstdlib>
    #include<cstring>
    #include<algorithm>
    #include<bitset>
    #include<map>
    using namespace std;
    #define ll long long
    #define N 10000010
    char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;}
    int gcd(int n,int m){return m==0?n:gcd(m,n%m);}
    int read()
    {
    	int x=0,f=1;char c=getchar();
    	while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();}
    	while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar();
    	return x*f;
    }
    map<int,int> id;
    int n,a[2010],b[2010],cnt;
    bitset<2010> f[10000][10];
    struct data{int d,cur,S,nxt,s;
    }q[N];
    void check(int &k)
    {
    	if (id.find(q[k].S)==id.end()) id[q[k].S]=++cnt;
    	if (f[id[q[k].S]][q[k].cur][q[k].nxt]) {k--;return;}
    	f[id[q[k].S]][q[k].cur][q[k].nxt]=1;
    }
    signed main()
    {
    #ifndef ONLINE_JUDGE
    	freopen("c.in","r",stdin);
    	freopen("c.out","w",stdout);
    #endif
    	n=read();
    	for (int i=1;i<=n;i++) a[i]=read(),b[i]=read();
    	int head=0,tail=1;
    	q[1].d=0;q[1].cur=1;q[1].S=0;q[1].nxt=1;q[1].s=0;check(tail);
    	do
    	{
    		data x=q[++head];if (x.S==0&&x.nxt>n) {cout<<x.d;return 0;}x.d++;
    		if (x.cur>1) q[++tail]=x,q[tail].cur--,check(tail);
    		if (x.cur<9) q[++tail]=x,q[tail].cur++,check(tail);
    		int u=(x.S>>3*x.cur-3)&7;
    		if (u) q[++tail]=x,q[tail].S=x.S^(u<<3*x.cur-3)^(u-1<<3*x.cur-3),q[tail].s--,check(tail);
    		if (x.s<4&&a[x.nxt]==x.cur) u=(x.S>>3*b[x.nxt]-3)&7,q[++tail]=x,q[tail].S=x.S^(u<<3*b[x.nxt]-3)^(u+1<<3*b[x.nxt]-3),q[tail].s++,q[tail].nxt++,check(tail);
    	}while (head<tail);
    	return 0;
    	//NOTICE LONG LONG!!!!!
    }
    

      E:显然每次贪心的选择能坐的尽量久的公交车即可。考虑倍增,对每个点预处理向上坐2k辆公交车能到的最高点。初始值通过子树查询得到。然后只需要考虑是否能通过某辆公交车跨越lca,这是一个矩形区域查询。

    #include<iostream>
    #include<cstdio>
    #include<cmath>
    #include<cstdlib>
    #include<cstring>
    #include<algorithm>
    #include<vector>
    using namespace std;
    #define ll long long
    #define N 200010
    char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;}
    int gcd(int n,int m){return m==0?n:gcd(m,n%m);}
    int read()
    {
    	int x=0,f=1;char c=getchar();
    	while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();}
    	while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar();
    	return x*f;
    }
    int n,m,fa[N][20],p[N],t,dfn[N],size[N],root[N],deep[N],reach[N][20],cnt,tot;
    vector<int> a[N];
    struct data{int to,nxt;
    }edge[N<<1];
    struct data2{int l,r,x;
    }tree[N<<6];
    void addedge(int x,int y){t++;edge[t].to=y,edge[t].nxt=p[x],p[x]=t;}
    void dfs(int k)
    {
    	dfn[k]=++cnt;size[k]=1;
    	for (int i=p[k];i;i=edge[i].nxt)
    	{
    		deep[edge[i].to]=deep[k]+1;
    		dfs(edge[i].to);
    		size[k]+=size[edge[i].to];
    	}
    }
    int lca(int x,int y)
    {
    	if (deep[x]<deep[y]) swap(x,y);
    	for (int j=19;~j;j--) if (deep[fa[x][j]]>=deep[y]) x=fa[x][j];
    	if (x==y) return x;
    	for (int j=19;~j;j--) if (fa[x][j]!=fa[y][j]) x=fa[x][j],y=fa[y][j];
    	return fa[x][0];
    }
    void ins(int &k,int l,int r,int x)
    {
    	tree[++tot]=tree[k];k=tot;tree[k].x++;
    	if (l==r) return;
    	int mid=l+r>>1;
    	if (x<=mid) ins(tree[k].l,l,mid,x);
    	else ins(tree[k].r,mid+1,r,x);
    }
    void dfs2(int k)
    {
    	cnt++;root[cnt]=root[cnt-1];
    	for (int i=0;i<a[k].size();i++) ins(root[cnt],1,n,dfn[a[k][i]]);
    	for (int i=p[k];i;i=edge[i].nxt)
    	{
    		dfs2(edge[i].to);
    		if (deep[reach[edge[i].to][0]]<deep[reach[k][0]]) reach[k][0]=reach[edge[i].to][0];
    	}
    }
    int query(int x,int y,int l,int r,int p,int q)
    {
    	if (!y) return 0;
    	if (l==p&&r==q) return tree[y].x-tree[x].x;
    	int mid=l+r>>1;
    	if (q<=mid) return query(tree[x].l,tree[y].l,l,mid,p,q);
    	else if (p>mid) return query(tree[x].r,tree[y].r,mid+1,r,p,q);
    	else return query(tree[x].l,tree[y].l,l,mid,p,mid)+query(tree[x].r,tree[y].r,mid+1,r,mid+1,q);
    }
    signed main()
    {
    #ifndef ONLINE_JUDGE
    	freopen("e.in","r",stdin);
    	freopen("e.out","w",stdout);
    #endif
    	n=read();
    	for (int i=2;i<=n;i++)
    	{
    		fa[i][0]=read();
    		addedge(fa[i][0],i);
    	}
    	fa[1][0]=1;dfs(1);
    	for (int j=1;j<20;j++)
    		for (int i=1;i<=n;i++)
    		fa[i][j]=fa[fa[i][j-1]][j-1];
    	m=read();
    	for (int i=1;i<=n;i++) reach[i][0]=i;
    	for (int i=1;i<=m;i++)
    	{
    		int from=read(),to=read(),key=lca(from,to);
    		if (deep[key]<deep[reach[from][0]]) reach[from][0]=key;
    		if (deep[key]<deep[reach[to][0]]) reach[to][0]=key;
    		a[from].push_back(to),a[to].push_back(from);
    	}
    	cnt=0;dfs2(1);
    	for (int j=1;j<20;j++)
    		for (int i=1;i<=n;i++)
    		reach[i][j]=reach[reach[i][j-1]][j-1];
    	int q=read();
    	while (q--)
    	{
    		int x=read(),y=read(),key=lca(x,y),ans=0;if (deep[x]<deep[y]) swap(x,y);
    		for (int j=19;~j;j--) if (deep[reach[x][j]]>deep[key]) ans+=1<<j,x=reach[x][j];
    		for (int j=19;~j;j--) if (deep[reach[y][j]]>deep[key]) ans+=1<<j,y=reach[y][j];
    		if (deep[reach[x][0]]>deep[key]||deep[reach[y][0]]>deep[key]) {printf("-1
    ");continue;}
    		if (key==y||query(root[dfn[x]-1],root[dfn[x]+size[x]-1],1,n,dfn[y],dfn[y]+size[y]-1)) printf("%d
    ",ans+1);
    		else printf("%d
    ",ans+2);
    	}
    	return 0;
    	//NOTICE LONG LONG!!!!!
    }
    

      D好像没看懂题解,自闭了。

  • 相关阅读:
    ios开发-2015-07-19
    ios开发-2015-07-18
    ios开发-2015-07-17
    ios开发-2015-07-16
    ios开发-2015-07-15
    ios开发-2015-07-14
    ios开发-2015-07-13
    Selenium源码分析之WebDriver
    webdriver实现原理 分类: Selenium 2015-07-16 00:16 11人阅读 评论(0) 收藏
    webdriver实现原理
  • 原文地址:https://www.cnblogs.com/Gloid/p/10416133.html
Copyright © 2020-2023  润新知