• LOJ2541 PKUWC2018猎人杀(概率期望+容斥原理+生成函数+分治NTT)


      考虑容斥,枚举一个子集S在1号猎人之后死。显然这个概率是w1/(Σwi+w1) (i∈S)。于是我们统计出各种子集和的系数即可,造出一堆形如(-xwi+1)的生成函数,分治NTT卷起来就可以了。

    #include<iostream> 
    #include<cstdio>
    #include<cmath>
    #include<cstdlib>
    #include<cstring>
    #include<algorithm>
    using namespace std;
    #define ll long long
    #define N 100010
    #define P 998244353
    char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;}
    int gcd(int n,int m){return m==0?n:gcd(m,n%m);}
    int read()
    {
        int x=0,f=1;char c=getchar();
        while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();}
        while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar();
        return x*f;
    }
    int n,a[N],s[N],r[N*3],inv[N*3],f[N*3],t,ans;
    int ksm(int a,int k)
    {
        int s=1;
        for (;k;k>>=1,a=1ll*a*a%P) if (k&1) s=1ll*s*a%P;
        return s; 
    }
    void DFT(int *a,int n,int g)
    {
        for (int i=0;i<n;i++) r[i]=(r[i>>1]>>1)|(i&1)*(n>>1);
        for (int i=0;i<n;i++) if (i<r[i]) swap(a[i],a[r[i]]);
        for (int i=2;i<=n;i<<=1)
        {
            int wn=ksm(g,(P-1)/i);
            for (int j=0;j<n;j+=i)
            {
                int w=1;
                for (int k=j;k<j+(i>>1);k++,w=1ll*w*wn%P)
                {
                    int x=a[k],y=1ll*w*a[k+(i>>1)]%P;
                    a[k]=(x+y)%P,a[k+(i>>1)]=(x-y+P)%P;
                }
            }
        }
    }
    void mul(int *a,int *b,int n)
    {
        DFT(a,n,3),DFT(b,n,3);
        for (int i=0;i<n;i++) a[i]=1ll*a[i]*b[i]%P;
        DFT(a,n,inv[3]);
        for (int i=0;i<n;i++) a[i]=1ll*a[i]*inv[n]%P;
    }
    void solve(int l,int r,int *f,int n)
    {
        if (l==r) {f[0]=1,f[a[l]]=P-1;return;}
        int a[n]={0},mid=l;
        for (int i=l;i<=r;i++) if (s[i]-s[l-1]>s[r]-s[i]) {mid=i;break;}
        if (mid==r) mid--;
        int t1=1;while (t1<=(s[mid]-s[l-1]<<1)) t1<<=1;
        solve(l,mid,f,t1);
        t1=1;while (t1<=(s[r]-s[mid]<<1)) t1<<=1;
        solve(mid+1,r,a,t1);
        mul(f,a,n);
    }
    int main()
    {
    #ifndef ONLINE_JUDGE
        freopen("loj2541.in","r",stdin);
        freopen("loj2541.out","w",stdout);
        const char LL[]="%I64d
    ";
    #else
        const char LL[]="%lld
    ";
    #endif
        n=read();
        for (int i=1;i<=n;i++) s[i]=s[i-1]+(a[i]=read());
        t=1;while (t<=(s[n]<<1)) t<<=1;
        inv[1]=1;for (int i=2;i<N*3;i++) inv[i]=P-1ll*(P/i)*inv[P%i]%P;
        solve(2,n,f,t);
        for (int i=0;i<=s[n];i++)
        ans=(ans+1ll*a[1]*inv[i+a[1]]%P*f[i])%P;
        cout<<ans;
        return 0;
    }
  • 相关阅读:
    Addrinfo and Getaddrinfo
    网络编程原始套接字
    《福布斯》:IT人最痛苦!?
    Git安装使用笔记 [转]
    Linux下Sniffer程序的实现
    HttpWebRequest post提交XMl参数请求,
    Flex学习记录(一)——MXML基本知识
    利用System.Net.Mail 的SmtpClient发送邮件
    Flex开源开发框架
    C# 手动/自动保存图片
  • 原文地址:https://www.cnblogs.com/Gloid/p/10147216.html
Copyright © 2020-2023  润新知