• BZOJ4873 Shoi2017寿司餐厅(最小割)


      选择了某个区间就必须选择其所有子区间,容易想到这是一个最大权闭合子图的模型。考虑将区间按长度分层,相邻层按包含关系连边,区间[i,j]的权值即di,j,其中最后一层表示长度为1的区间的同时也表示寿司本身,所以其权值减去x。这样建出原图,再用最大权闭合子图的方法重建就行了。于是m=0的情况就解决了。给最后一层的点连向寿司代号,m=1也就做完了。

    #include<iostream> 
    #include<cstdio>
    #include<cmath>
    #include<cstdlib>
    #include<cstring>
    #include<algorithm>
    using namespace std;
    #define ll long long
    #define N 110
    #define M 6789
    #define S 0
    #define T 6666
    #define inf 1000000010
    char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;}
    int gcd(int n,int m){return m==0?n:gcd(m,n%m);}
    int read()
    {
        int x=0,f=1;char c=getchar();
        while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();}
        while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar();
        return x*f;
    }
    int n,m,a[N],v[N][N],id[N][N],id2[1010],p[M],t=-1,cnt,ans;
    int d[M],cur[M],q[M];
    struct data{int to,nxt,cap,flow;
    }edge[M<<3];
    void addedge(int x,int y,int z)
    {
        t++;edge[t].to=y,edge[t].nxt=p[x],edge[t].cap=z,edge[t].flow=0,p[x]=t;
        t++;edge[t].to=x,edge[t].nxt=p[y],edge[t].cap=0,edge[t].flow=0,p[y]=t;
    }
    bool bfs()
    {
        memset(d,255,sizeof(d));d[S]=0;
        int head=0,tail=1;q[1]=S;
        do
        {
            int x=q[++head];
            for (int i=p[x];~i;i=edge[i].nxt)
            if (d[edge[i].to]==-1&&edge[i].flow<edge[i].cap)
            {
                q[++tail]=edge[i].to;
                d[edge[i].to]=d[x]+1;
            }
        }while (head<tail);
        return ~d[T];
    }
    int work(int k,int f) 
    {
        if (k==T) return f;
        int used=0;
        for (int i=cur[k];~i;i=edge[i].nxt)
        if (d[k]+1==d[edge[i].to])
        {
            int w=work(edge[i].to,min(f-used,edge[i].cap-edge[i].flow));
            edge[i].flow+=w,edge[i^1].flow-=w;
            if (edge[i].flow<edge[i].cap) cur[k]=i;
            used+=w;if (used==f) return f;
        }
        if (used==0) d[k]=-1;
        return used;
    }
    void dinic()
    {
        while (bfs())
        {
            memcpy(cur,p,sizeof(p));
            ans-=work(S,inf);
        }
    }
    int main()
    {
    #ifndef ONLINE_JUDGE
        freopen("bzoj4873.in","r",stdin);
        freopen("bzoj4873.out","w",stdout);
        const char LL[]="%I64d
    ";
    #else
        const char LL[]="%lld
    ";
    #endif
        n=read(),m=read();
        for (int i=1;i<=n;i++) a[i]=read();
        for (int i=1;i<=n;i++)
            for (int j=i;j<=n;j++)
            v[i][j]=read();
        memset(p,255,sizeof(p));
        for (int k=n;k>=1;k--)
            for (int i=1;i<=n-k+1;i++)
            {
                int j=i+k-1;
                id[i][j]=++cnt;
                if (i>1) addedge(id[i-1][j],id[i][j],inf);
                if (j<n) addedge(id[i][j+1],id[i][j],inf);
                int x=v[i][j];if (k==1) x-=a[i];
                if (x>0) ans+=x,addedge(S,id[i][j],x);
                else addedge(id[i][j],T,-x);
            }
        if (m==1)
        for (int i=1;i<=n;i++)
        {
            if (!id2[a[i]]) id2[a[i]]=++cnt,addedge(id2[a[i]],T,a[i]*a[i]);
            addedge(id[i][i],id2[a[i]],inf);
        }
        dinic();
        cout<<ans;
        return 0;
    }
  • 相关阅读:
    CSS开发中常用技巧总结
    Linq的分组功能
    深入理解 C# 协变和逆变
    js数组删除数组元素!
    关于 Photoshop 蒙版和 Alpha 通道
    jQuery数组处理详解(含实例演示)
    多媒体指令(灰度像素最大值)
    多媒体指令(图像均值模糊)
    matlab练习程序(立体相关块匹配)
    matlab练习程序(steerable filters)
  • 原文地址:https://www.cnblogs.com/Gloid/p/10019674.html
Copyright © 2020-2023  润新知