题意:
给定一个链表,判断链表中是否有环。
为了表示给定链表中的环,我们使用整数 pos
来表示链表尾连接到链表中的位置(索引从 0 开始); 如果 pos
是 -1
,则在该链表中没有环。
示例 1:
输入:head = [3,2,0,-4], pos = 1 输出:true 解释:链表中有一个环,其尾部连接到第二个节点。
示例 2:
输入:head = [1,2], pos = 0 输出:true 解释:链表中有一个环,其尾部连接到第一个节点。
示例 3:
输入:head = [1], pos = -1 输出:false 解释:链表中没有环。
思路:
想象一下,两名运动员以不同的速度在环形赛道上跑步会发生什么?
算法:
通过使用具有 不同速度的快、慢两个指针遍历链表,空间复杂度可以被降低至 O(1)O(1)O(1)。慢指针每次移动一步,而快指针每次移动两步。如果列表中不存在环,最终快指针将会最先到达尾部,此时我们可以返回 false。
现在考虑一个环形链表,把慢指针和快指针想象成两个在环形赛道上跑步的运动员(分别称之为慢跑者与快跑者)。而快跑者最终一定会追上慢跑者。这是为什么呢?考虑下面这种情况(记作情况 A)- 假如快跑者只落后慢跑者一步,在下一次迭代中,它们就会分别跑了一步或两步并相遇。
其他情况又会怎样呢?例如,我们没有考虑快跑者在慢跑者之后两步或三步的情况。但其实不难想到,因为在下一次或者下下次迭代后,又会变成上面提到的情况 A。
代码:
1 /** 2 * Definition for singly-linked list. 3 * struct ListNode { 4 * int val; 5 * ListNode *next; 6 * ListNode(int x) : val(x), next(NULL) {} 7 * }; 8 */ 9 class Solution { 10 public: 11 bool hasCycle(ListNode *head) { 12 ListNode *fast = head; 13 ListNode *slow = head; 14 while (fast != NULL && fast->next != NULL) 15 { 16 fast = fast->next->next; 17 slow = slow->next; 18 if (fast == slow) 19 return true; 20 } 21 return false; 22 } 23 };